
DockingFrames 1.1.1 - Core

Benjamin Sigg

August 18, 2012

1

Contents

1 Introduction 5
1.1 Core vs Common . 5
1.2 Use cases . 5
1.3 Other frameworks . 6
1.4 Notation . 6
1.5 Design principles . 7
1.6 Numbers . 8

2 Basics 9
2.1 Hello World . 9
2.2 Dockable . 10
2.3 DockStation . 11

2.3.1 StackDockStation . 11
2.3.2 SplitDockStation . 12
2.3.3 FlapDockStation . 13
2.3.4 ScreenDockStation . 14

2.4 DockController . 15
2.5 DockFrontend . 16

2.5.1 Close-Button . 17
2.5.2 Storing the layout . 17

3 Load and Save layouts 18
3.1 Placeholders . 18
3.2 Local: DockableProperty . 19

3.2.1 Creation . 19
3.2.2 Usage . 20
3.2.3 Storage . 21

3.3 Global: DockSituation . 21
3.3.1 Basic Algorithms . 21
3.3.2 Basic Usage . 23
3.3.3 Reuse existing Dockables 24
3.3.4 Exctract local information 26

3.4 Perspectives . 26
3.5 DockFrontend . 27

3.5.1 Local . 27
3.5.2 Global . 27
3.5.3 Missing Dockables . 28

4 Actions 30
4.1 Show Actions . 31

4.1.1 List of Actions . 31
4.1.2 Source of Actions . 31

4.2 Standard Actions . 32
4.2.1 Simple actions . 33
4.2.2 Group actions . 34

4.3 Custom actions . 35
4.3.1 Reuse existing view . 35
4.3.2 Custom view . 36

2

5 Titles 38
5.1 Lifecycle . 38
5.2 Custom titles . 39

5.2.1 Implementing a new title 39
5.2.2 Apply the title . 40

6 Themes 41
6.1 Existing Themes . 41

6.1.1 NoStackTheme . 41
6.1.2 BasicTheme . 41
6.1.3 SmoothTheme . 42
6.1.4 FlatTheme . 42
6.1.5 BubbleTheme . 42
6.1.6 EclipseTheme . 43

6.2 Custom Theme . 44
6.3 Customizing . 44

6.3.1 UI-Properties . 44
6.3.2 Colors . 46
6.3.3 Fonts . 47
6.3.4 Icons . 47
6.3.5 Text . 48
6.3.6 Actions . 48
6.3.7 Titles . 48
6.3.8 Border . 48
6.3.9 Background . 48
6.3.10 Drag and drop decorations 48
6.3.11 Displayers . 48

7 Stations in depth 50
7.1 ScreenDockStation . 50

7.1.1 Window type . 50
7.1.2 Window configuration . 51
7.1.3 Stickiness and attraction 51
7.1.4 Fullscreen . 51
7.1.5 Drop size . 52

7.2 SplitDockStation . 52
7.2.1 The tree . 52
7.2.2 Divider . 53
7.2.3 LayoutManager . 53

7.3 StackDockStation . 54
7.3.1 TabPane . 54
7.3.2 Tab content . 55
7.3.3 Tab configuration . 56
7.3.4 Header layout . 56

7.4 FlapDockStation . 56
7.4.1 Button content . 56
7.4.2 Button actions . 57

3

8 Drag and Drop 58
8.1 Relocator . 58
8.2 Deciding what element to drag 58

8.2.1 DockElementRepresentative 58
8.2.2 Remote control . 59

8.3 Deciding where to drop an element 59
8.3.1 Search . 60
8.3.2 Drop . 60

8.4 Restrictions . 61
8.5 Modes . 62
8.6 Animations . 62

9 Preferences 64
9.1 Model . 64

9.1.1 Preference . 64
9.1.2 PreferenceModel . 65
9.1.3 PreferenceTreeModel . 65

9.2 View . 66
9.2.1 Editors . 66
9.2.2 Operations . 66

9.3 Storage . 67
9.4 Lifecycle . 67

10 Extensions 69
10.1 Extension Points . 69
10.2 Glass Extension . 70
10.3 Toolbar Extension . 71

11 Properties 72
11.1 Themes . 72
11.2 Stations . 74
11.3 Miscellaneous . 76
11.4 Gimmicks . 77
11.5 Glass Extension . 78
11.6 Toolbar Extension . 78

4

1 Introduction

DockingFrames is an open source Java Swing framework published under the
LGPL (lesser GNU public license). This means you are allowed to use
DockingFrames in any way you like. However if you modify the framework
you are required to distribute the modified source code together with your new
library.

This document introduces you to the basic concepts of Core. Naturally it
cannot cover all the details, you should also have a look into the API doc-
umentation http://dock.javaforge.com/doc.html, the tutorial project and
the forum on http://forum.byte-welt.net/.

1.1 Core vs Common

DockingFrames consists of two projects, Core and Common (the libraries
docking-frames-core.jar and docking-frames-common.jar). The impor-
tant thing first: clients should use Common whenever possible.

Core provides the functionality, all the code that is required to show things
on the screen and to interact with them. The content of Core is very generic,
and while the API allows to implement many features, Core itself does not
provide them.

Common provides an advanced default setup of Core. Features that are possi-
ble in Core, are implemented in Common. The API of Common is more restricted,
but at the same time more easy to use.

If you are uncertain which API to take, consider these tipps:

� If using Common, the API of Core is available as well.

� If you want to implement new functionality that does not yet exist in
either project, then you should start with Core.

� Everyone else who just wants to get an application running in a reasonable
amount of time, and is not interested in over-the-top customization, will
be much happier using Common.

� If you are still not certain: use Common.

Clients should make use of the Common project. In or-
der to do so the libraries docking-frames-core.jar and
docking-frames-common.jar have to be included in the class-
path.

1.2 Use cases

What does the framework do? DockingFrames manages the layout of your
graphical user interface. It allows the user to rearrange your user interface in
the way he or she likes it. All you need to do is to group your controles in small
panels (called Dockables).

For which application can it be used? In general one can say that bigger
applications profit more than small ones. Also power-users will like the flexibility

5

to set up “their” user interface, the common user however might be overhelmed
by all the buttons and options. A typical use-case would be an application which
can present so many data to the user that one screen is not enough. With a
modifiable user interface the user can easily filter the data and blend out the
graphs, panels and buttons he does not need.

1.3 Other frameworks

There are at least 10 other docking frameworks for Java. As with any complex
software it is impossible to say which of them is the best one. But there are
some features which make sure DockingFrames is one of the better ones:

� The licence, you can use the framework without paying a fee nor are you
required to open source your entire project.

� It is pure Swing, it does not have any dependencies to other libraries.
It does not force you to use some special design pattern or set up some
cryptic configuration files.

� It does support unsigned applets (does anyone use them anymore?) and
webstart.

� Multiple instances can run independent from each other. Sounds trivial,
but there are many libraries which cannot handle this case. This design
has benefits, for example a preference dialog can easily show a preview.
The preview is just another instance and any properties only affects this
independent instance.

� Much control for the client. You can change almost anything to your
likings. Unfortunatelly this is not always easy as some properties are
hidden deep in the framework. On the bright side you are now reading
the document which tells you how to modify some of the modules.

1.4 Notation

This document uses the following style-guide:

� “Technical things” like class names and project names are written mono-
spaced like this: java.lang.String.

� Packages are not written. Almost all classes and interfaces have a unique
name and with the help of the API documentation you should be able to
find them easily.

� “The client” is the application using DockingFrames. “The developer” is
you. “The user” is a sentient beeing using “the client”, this might even
be yourself.

� Additional information is given in boxes like the ones below.

6

Tips and tricks are listed in boxes.

Important notes and warnings are listed in boxes like this one.

Implementation details, especially lists of class names, are written
in boxes like this.

These boxes explain why some thing was designed the way it is.
This might either contain some bit of history or an explanation
why some awkward design is not as bad as it first looks.

Examples in the tutorial application are mentioned in these boxes.

1.5 Design principles

In order to understand Core it helps to know what the basic design is. These
design principles are applied through the entire framework. Most modules follow
this principles, altough there are a few exceptions in old code.

� The usage of static variables is discouraged. There are no global vari-
ables, all components must be built in a way that multiple instances can
be run by the same classloader at the same time independently from each
other.

� Communication through interfaces and usage of factories. Especialy newer
code makes heavy use of factories and interfaces to keep classes indepen-
dent from each other. This also means that the keyword instanceof is
to be used rarely.

� Strong typesafty. For the client is should be impossible to smuggle an
object of the wrong type into the framework, there should never be a
ClassCastExceptions.

� Apply properties eagerly. This means that if the client changes some
property it is applied before the client continous its work. This makes
some parts of the framework more complex, but in the long run it adds a
lot of flexibility.

7

1.6 Numbers

In Core, there are about 80’000 lines of code, distributed in over 1700 classes
and interfaces. You don’t need to know all of them to get your first application
to run. Ordered by their semantics, the classes can be collected in groups:

Control group Long living objects which control the behavior of the user in-
terface. For example the object handling drag & drop is created once and
remains until the application shuts down.

Swing tree group Objects that are actually seen by the user because they
are some kind of java.awt.Component. These objects build a tree, the
objects from the control group can be seen as roots in this tree. Clients,
or the framework itself, frequently reorganizes this tree.

Theme group Objects responsible for painting the user interface. Sometimes
these classes are big and complex, but they never are important. They
can always be replaced with some other painting code.

Support group Various small classes which do not fit into the other groups.
These objects often have a short lifetime and can do exactly one task. A
factory would be a good example.

Comparing the sizes (number of lines) of these groups the follow-
ing numbers are seen:

Control group 10%
Swing tree group 30%
Theme group 20%
Support group 40%

8

2 Basics

The basic idea of Core is to have one object that controls the framework, one
object for each floating panel and one object for each area where a floating panel
can be docked.

The controller is a DockController, the floating panels are
Dockables and the dock-areas are DockStations.

2.1 Hello World

Let’s start with a simple hello world. This application uses the three basic
components, the example consists of valid code and can run:

1 import javax . swing . JFrame ;
2
3 import b i b l i o t h ek . gui . DockContro l ler ;
4 import b i b l i o t h ek . gui . dock . DefaultDockable ;
5 import b i b l i o t h ek . gui . dock . Sp l i tDockStat ion ;
6 import b i b l i o t h ek . gui . dock . s t a t i o n . s p l i t . Spl itDockGrid ;
7
8 public c lass HelloWorld {
9 public stat ic void main (St r ing [] a rgs) {

10 DockContro l ler c o n t r o l l e r = new DockContro l ler () ;
11
12 Sp l i tDockStat ion s t a t i o n = new Spl i tDockStat ion () ;
13 c o n t r o l l e r . add (s t a t i o n) ;
14
15 Spl itDockGrid g r id = new Spl itDockGrid () ;
16 g r id . addDockable (0 , 0 , 2 , 1 , new DefaultDockable (”N”)) ;
17 g r id . addDockable (0 , 1 , 1 , 1 , new DefaultDockable (”SW”)) ;
18 g r id . addDockable (1 , 1 , 1 , 1 , new DefaultDockable (”SE”)) ;
19 s t a t i o n . dropTree (g r id . toTree ()) ;
20
21 JFrame frame = new JFrame () ;
22 frame . add (s t a t i o n . getComponent ()) ;
23
24 frame . se tDe fau l tC loseOperat ion (JFrame .EXIT ON CLOSE) ;
25 frame . setBounds (20 , 20 , 400 , 400) ;
26 frame . s e tV i s i b l e (true) ;
27 }
28 }

Figure 1: The HelloWorld application.

What happens here? In line 10 a DockController is created. The controller
will handle things like drag and drop. All elements will be in his realm. In line
12 a new DockStation is created and in line 13 this station is registered as root
station at the DockController.

9

Then in line 15-19 a few children for station are generated. To set the
layout of those children a SplitDockGrid is used. SplitDockGrid takes a few
Dockables and their position and puts this information into a form that can be
understood by SplitDockStation (line 19). It would be possible to add the
Dockables directly to the station, but this is the easy way.

In line 21 a new frame is created and in line 22 our DockStation is added
to the frame.

More demonstration applications can be found in the archive-file
of DockingFrames. The demonstrations are stored in the project
called “tutorial“. You can use the ”tutorial.sh“ or ”tutorial.bat“
file to start them.

Another ”hello world“ can be found in the tutorial application
under ”Basics/Core/Hello World“.

2.2 Dockable

A Dockable represents a floating panel, it consists at least of some JComponent

(the panel it represents), some Icon and some text for a title. Each Dockable

can be dragged by the user and dropped over a DockStation.
Clients can implement the interface Dockable, but it is much less painful

just to use DefaultDockable. A DefaultDockable behaves in many ways like
the well known JFrame: title, icon and panel can be set and replaced at any
time.

A small example:

1 DefaultDockable dockable = new DefaultDockable () ;
2 dockable . s e tT i t l eText (” I ’m a JTree”) ;
3 Container content = dockable . getContentPane () ;
4 content . setLayout (new GridLayout (1 , 1)) ;
5 content . add (new JScro l lPane (new JTree ())) ;

If implementing Dockable, pay special attention to the API-doc.
Some methods have a rather special behavior. It might be a good
idea to subclass AbstractDockable or to copy as much as possible
from it.

10

A careful analysis of Dockable reveals that there is no way for ap-
plications to store their own properties within a Dockable (unless
using a subclass...). There are two reasons for this.
First: if only using the default implementation, then clients do
not have to worry about these properties. Storage of properties
must and will be handled by the framework itself.
Second: Components of the framework cannot get any unfair ad-
vantage over custom components. Everything has to be designed
in a way that it can work with new and unexpected implementa-
tions of Dockable.

2.3 DockStation

Dockables can never fly around for themselves, they need a DockStation as
anchor point. The relationship between DockStation and Dockable can best be
described as parent-child-relationship. A DockStation can have many children,
but a Dockable only one parent.

There are some classes which are DockStation and Dockable at the same
time. They allow to build a tree of DockStations and Dockables. A controller
can handle more than just one tree and Dockables can switch from one tree to
another.

Clients can implement new DockStations. But be warned that the interface
contains many methods and a lot of them require a lot of code. Don’t expect
to write less than 1000 lines of code.

A small example that builds a StackDockStation:

1 StackDockStation stack = new StackDockStation () ;
2 s tack . s e tT i t l eText (”Stack”) ;
3 s tack . drop (new DefaultDockable (”One”)) ;
4 s tack . drop (new DefaultDockable (”Two”)) ;

Some observations: StackDockStation is a Dockable as well, in line 2 the title
is set. Two DefaultDockables are put onto the station in lines 3,4, the method
drop is available in all DockStations.

DockStations are the most complex classes within the framework,
they are also among the most important classes. It is very uncom-
mon to subclass them or to write new ones. If you think you need
to subclass a DockStation, be sure to have explored all other
options.

Core offers a collection four different stations. These are listed in the re-
mainder of this section. Additional details can be found in chapter 7.

2.3.1 StackDockStation

This station is organized like a JTabbedPane. Only one child is visible, but
another can be made visible by clicking some button. The framework will au-
tomatically create new StackDockStations when a Dockable is dragged over

11

another. Also StackDockStations with only one child get automatically re-
placed by this child.

Figure 2: A StackDockStation with four children on a frame.

The station consists of four layers, as seen in the image below.
There is a background panel (1) which just is some Container to
put other things onto it. Then there is a selection layer (2), which
is represented by an instance of StackDockComponent. Above
that is a DockableDisplayer (3) for each Dockable. The dis-
players paint some decorations that depend on the Dockables in
the topmost layer (4).

2.3.2 SplitDockStation

All the children of this station are visible. The user controls the children as if
the station would consist of many JSplitPanes set into each other (hence the
name). Internally the station is organized as tree, where a leaf is a Dockable

and a node the gap between two sets of Dockables. Furthermore this station
offers a “fullscreen mode” where one of its children takes up the entire space
and all other children are invisible.

12

Figure 3: A SplitDockStation with four children on a frame.

Like the StackDockStation, this station consists of four
layers. Layers 1, 3 and 4 are identical to the lay-
ers of the StackDockStation. A background panel (1),
DockableDisplayers (3) to paint decorations and the children
(4). Layer 2 is the logical tree which tells how to lay out the
children. The nodes of this tree consist of SplitNodes and the
root can be accessed through the method getRoot. Clients should
never add or remove nodes from the tree directly.

2.3.3 FlapDockStation

This station is a list of buttons. If the user clicks on one of the buttons a window
opens showing a child. Only one child can be shown at a time. This station can
be used as sidebar to collect “minimized” Dockables.

13

Figure 4: A FlapDockStation with three children on a frame. The selected
child is a StackDockStation containing two more children.

FlapDockStation consists of 5 layers. A background panel (1)
as Container for other components. A set of buttons (2), each
button is a DockTitle. Then there is the window that shows the
current selection (3), an instance of FlapWindow. A displayer (4)
to paint decorations and the Dockable child (5) that is selected.

2.3.4 ScreenDockStation

The ScreenDockStation allows its children to float around freely on the screen.
Each child is put onto its own window which is independent from any other
window. This station also offers a “fullscreen mode” where a window is enlarged
to fill the entire space of a screen.

14

Figure 5: A ScreenDockStation with two children floating over a frame.

This station is pretty simple and consists of only 3 layers.
Some windows (1), instances of ScreenDockWindow, provide a
container to show the children. On each window there is a
DockableDisplayer (2) to paint decorations, and on top is one
Dockable child (3).

2.4 DockController

A DockController holds Dockables, DockStations and other supporting ele-
ments together. Most tasks are not handled by the DockController but by one
of its sub-controllers, e.g. drag and drop is handled by the DockRelocator.

There can be more than one DockController in an application. Each con-
troller has its own realm and there is no interaction between controllers. But
most applications will need only one DockController.

Clients need to register the roots of their DockStation-Dockable-trees.

15

They can use the method add of DockController to do that. All children
of the root will automatically be registered as well. If a DockStation is not
registered anywhere, it just does not work properly. For Dockables one could
say that registration equals visibility. A registered Dockable can be seen by the
user, an unregistered not.

DockController uses other classes to handle tasks. Many of these
classes can be observed by listeners. An incomplete list:
DockRegister: a list of all Dockables and DockStations.
DockRelocator: handles drag and drop operations, can create a
Remote to play around without user interaction.
DoubleClickController: detects double clicks on Dockables or
on components which represent Dockables.
KeyBoardController: detects KeyEvents on Dockables or on
components which represent Dockables.

Never forget to register the root-DockStation(s) at the
DockController using the method add.

Why not just one DockController implemented as singleton? A
singleton would make many interfaces simpler, eliminating all the
code where the controller is handed over to even the smallest
object. But there is absolutely no reason why only one controller
should exist. A controller has no unique property that would
justify a singleton. And not using a singleton gives more flexibility.

2.5 DockFrontend

DockController only implements the basic functionallity. While this allows
developers to add new exciting shiny customized features, it certainly doesn’t
help those developers which just want to use the framework.

The class DockFrontend represents a layer before DockController and adds
a set of helpful methods. Especially a “close”-button and the ability to store
and load the layout are a great help. DockFrontend replaces DockController,
clients should add the root-DockStations directly to the frontend, not to the
controller. They can use the method addRoot to do so.

DockFrontend adds a few nice features but not enough to
write an application without even bothering to have a look at
DockingFrames. Developers which can live with not having abso-
lute control over the framework should use Common. Common adds
all those features which make a docking-framework complete, e.g.
a “minimize”-button

16

DockFrontend was written long after DockController. For the
most part it just reuses code that already exists. It would be
possible to write two applications with exact the same behavior
once with and once without DockFrontend. The only thing that
DockFrontend adds to the framework is a central hub where all
the important features are accessible and a good set of default-
values for various properties of the framework.

Use the methods called setDefault... to set default values for
properties which will be used for all Dockables, e.g. whether
Dockables are hideable or not.

2.5.1 Close-Button

In order to show the close-button clients need first to register their Dockables.
The method addDockable is used for that. Each Dockable needs a unique
identifier that is used internally by DockFrontend. Later clients can call the
method setHideable to show or to hide the close-button.

By calling the method setShowHideAction clients can make the buttons
invisible for all Dockables, note however that the Dockables hideable-property
is not affected by this method.

If clients want to control whether a Dockable can be closed, they should add
a VetoableDockFrontendListener to the DockFrontend. This listener will be
informed before a Dockable is made invisible and allows to cancel the operation.

Why is the close-button not part of the very core of the frame-
work? For one because the very core works on abstract levels and
should not be made more complex with special cases like this but-
ton. There are also different implementations of this button and
not all perform the same actions when pressed (this is especially
true when using Common).

2.5.2 Storing the layout

The methods save, load, delete and getSettings are an easy way to store
and load the layout. This mechanism will be explained in detail in another
chapter.

17

3 Load and Save layouts

The layout of an application consists of the location, size and relationship of
all the Dockables and DockStations. DockingFrames offers methods to store
this layout persistently. Applications should use persistent layouts because the
user certainly does not want to set up his preferred layout everytime when the
application restarts.

DockingFrames distinguishes between local and global layout information:

1. Local information describes the relationship between one Dockable and its
parent(s). Local information is represented by a chain of
DockablePropertys, and each DockStation offers a method
getDockableProperty to find the location of one of its children.

2. Global information describes the relationship of an entire tree of
Dockables and DockStations. The class DockSituation offers methods
to extract and to apply this data.

It should be notet that applications need to handle both local and global
information in order to create a truly persistent layout. Local information is
needed to store the location of Dockables which are invisible (not in the tree),
global information is needed when stopping and starting the application. There
are no algorithms implemented to create global information out of local infor-
mation, and there are only basic algorithms which create local information out
of global information. In any case, conversion between these two formats should
be considered not to be possible.

For many applications the easiest solution to handle persistent
layouts is to use a DockFrontend and completely ignore all the
other sections of this chapter (see chapter 3.5).

3.1 Placeholders

Placeholders are an optional extension that allow clients to link global and
local information. The idea behind placeholders is, that some Dockables can be
assigned a unique identifier. If such a Dockable is removed from a DockStation,
then a placeholder remains. At later time when the Dockable is added again
to that station, the placeholder can be used to place the element at its former
location. Placeholders are stored in the global and the local layout information,
and thus build a link.

In Core this mechanism is normally disabled. Clients must implement a
new PlaceholderStrategy and install the strategy using the property key
PlaceholderStrategy.PLACEHOLDER STRATEGY. The strategy should be set up
before reading a layout, otherwise all placeholders will be marked as invalid and
be deleted. The strategy should also be applied to any DockSituation that is
created by clients.

An implementation of a PlaceholderStrategy can be found in
the example “Persistent Layout: Placeholders”.

18

Placeholders were introduced in version 1.0.8. One of the rea-
sons they were not used earlier is that they make data structures
complex. Also detecting and removing invalid and outdated place-
holders requires some work.

Most DockStations use the PlaceholderList and the
PlacehoderMap to manage their Dockables and placehold-
ers.

3.2 Local: DockableProperty

Every DockStation can create DockableProperty-objects for its children. Each
of these DockablePropertys contains the position, size, placeholder and/or
other data about one child.

Some DockStations are also Dockables. Those stations are not only able
to create DockableProperties for their children but their parents can create a
property for them. These two properties can be strung together to form a chain
describing the position of a grand-child on its grand-parent.

3.2.1 Creation

How to create a DockableProperty? One way is of course just to create new
objects using new XYProperty(...). The other way is to retrieve them from
some DockStations and Dockables:

1 Dockable dockable = . . .
2
3 DockStation root = DockUt i l i t i e s . getRoot (dockable) ;
4 DockableProperty l o c a t i o n = DockUt i l i t i e s . getPropertyChain (root ,

dockable) ;

In line 1 we get some unknown Dockable. In line 3 the DockStation which is
at the top of the tree of stations and Dockables is searched. Then in line 4 the
location of dockable in respect to root is determined.

19

There are seven DockableProperties present in the framework.

StackDockProperty for StackDockStation, contains just the
index of the Dockable in the stack.

FlapDockProperty for FlapDockStation, contains index, size
and whether the Dockable should hold its position when not
focused.

ScreenDockProperty for ScreenDockStation, contains the
boundaries of a Dockable on the screen.

SplitDockProperty for SplitDockStation. This deprecated
property contains the boundaries of a Dockable on the sta-
tion.

SplitDockPathProperty also for SplitDockStation. This
new property contains the exact path leading to a Dockable

in the tree that is used internally by the SplitDockStation.

SplitDockPlaceholderProperty also for SplitDockStation.
This property stores a placeholder, an identifier whose po-
sition is already known to the SplitDockStation. If the
placeholder is not found, then a backup property can be
applied.

SplitDockFullScreenProperty also for SplitDockStation.
This property points to a child that is maximized.

3.2.2 Usage

How to apply a DockableProperty? Every DockStation has a method drop

that takes a Dockable and its position. That might look like this:

1 Dockable dockable = . . .
2 DockStation root = . . .
3 DockableProperty l o c a t i o n = . . .
4
5 i f (! root . drop (dockable , l o c a t i o n)){
6 root . drop (dockable) ;
7 }

In lines 1-3 some elements that were stored earlier are described. In line 5 we
try to drop dockable on root, if that fails we just drop it somewhere (line 6).

DockablePropertys are not safe to use. If the tree of stations and Dockables
changes, then an earlier created DockableProperty might not be consistent
anymore. The method drop of DockStation checks for consistency and returns
false if a DockableProperty is no longer valid.

Always check the result of drop, if it is false then the operation
was canceled by the station because the property is invalid.

20

3.2.3 Storage

DockablePropertys can be stored either as byte-stream or in xml-format by a
PropertyTransformer. A set of DockablePropertyFactories is used by the
transformer to store and load properties. The factories for the default properties
are always installed. If a developer adds new properties then he should use the
method addFactory to install new factories for them.

If using DockFrontend the method registerFactory can be used
to add a new DockablePropertyFactory. This factory will then
be used by the global transformer of the frontent.

3.3 Global: DockSituation

The layout of a whole set of Dockables and DockStations can be stored with
the help of a DockSituation. A DockSituation is a set of algorithms that
transform the layout information from one format into another, e.g. from the
dock-tree (built by stations and Dockables) to an xml-file. A DockSituation

uses various factories for these transformations.

An example featuring several aspects of global layouts is “Persis-
tent Layout: Global”.

3.3.1 Basic Algorithms

Global layout information appears in five formats:

dock-tree format The set of Dockables and DockStations as they are seen
by the user.

binary format A file containing binary data. This file is normally written by
a DataOuputStream and read by a DataInputStream.

xml format A file containing xml. To write and read such a file the class XIO
is used.

layout-composition format An intermediate format that consists of a set of
DockLayoutCompositions. These objects are organized in a tree that has
the same form as the dock-tree.

perspective format A lightweight version of the “dock-tree format”, for easy
modification by clients. More about perspectives can be found in section
3.4.

If converting from a to b then a DockSituation will always first convert a to
layout-composition and then layout-composition to b.

DockSituation always creates new files or new objects. In its
basic form it is not able to reuse existing elements.

21

A DockSituation uses different factories and strategies for these conversions:

DockFactory These factories are responsible to load or store the layout of
a single Dockable or DockStation. Like DockSituation they need to
support different formats, but they are free to choose any object as inter-
mediate format.

AdjacentDockFactory They function the same way as DockFactories but
can be used for arbitrary dock-elements. AdjacentDockFactories are
used to store additional information about elements, that can, but does
not have to be, layout information.

MissingDockFactory These are used when another factory is missing. The
MissingDockFactory can try to read the xml-format or binary-format
and convert it to the intermediate format.

DockSituationIgnore This strategy allows a DockSituation to ignore dock-
elements when storing the layout. That can be helpful if for example an
application has Dockables which show only temporary information that
will be lost on shutdown anyway.

PlaceholderStrategy This strategy filters placeholders, invalid placeholders
are removed from the layout.

A DockSituation can handle missing factories when reading xml or binary
format. It first tries to use a MissingDockFatory to read the data, if that fails
it either throws away the data (for AdjacentDockFactories) or stores the data
in the layout-composition as “bubble” in its raw format. These “bubbles” can
be converted later when the missing factories are found.

A DockLayoutComposition contains a lot of information. First of
all a list of children to build the tree. Then a list of DockLayouts
which represent the information from AdjacentDockFactories.
Each DockLayout contains a unique identifier for the fac-
tory and the data generated by the factory. Finally a
DockLayoutComposition contains a DockLayoutInfo which rep-
resents the data of or for a DockFactory. A DockLayoutInfo

either contains a DockLayout (the normal case) or some data in
xml or binary format. The later case happens if a factory was
missing while reading a file, the information gets stored until it
can be read later.

The method fillMissing can be used to read “bubbles” in raw
format. The method estimateLocations can be used to build
DockablePropertys for the elements. These are the positions
were the elements would come to rest if the layout information
were converted into a dock-tree.

22

3.3.2 Basic Usage

How is a DockSituation utilized in order to load or store the layout of an
application?

Each Dockable and each DockStation has a method getFactoryID. This
method returns an identifier that has to match the unique identifier that is
returned by the method getID of DockFactory. The first step in using a
DockSituation will always be to make sure that for any identifier a matching
DockFactory is available. Clients have to call the method add of DockSituation
to do so.

Default factories are installed for DefaultDockable,
SplitDockStation, StackDockStation and FlapDockStation.

The ScreenDockStationFactory for ScreenDockStation is not
installed per default. This factory requires a WindowProvider

to create the station, and since this provider cannot be guessed
by DockSituation the factory is missing. Clients have to add
ScreenDockStationFactory manually.

Afterwards clients just have to call write or writeXML to write a set of
DockStations and their children. Clients can later call read or readXML to
read the same map of elements. Note that every call to read or readXML will
create a new set of Dockable- and DockStation-objects.

Let’s give an example how to write an xml file:

1 try{
2 JFrame frame = . . .
3 DockStation root = . . .
4
5 DockSituat ion s i t u a t i o n = new DockSituat ion () ;
6 s i t u a t i o n . add (new ScreenDockStat ionFactory (frame)) ;
7 s i t u a t i o n . add (new MySpecialFactory ()) ;
8
9 Map<Str ing , DockStation> map = new HashMap<Str ing , DockStation >() ;

10 map . put (” root ” , root) ;
11
12 XElement xlayout = new XElement (” layout ”) ;
13 s i t u a t i o n . writeXML(map, x layout) ;
14
15 FileOutputStream out = new FileOutputStream (” layout . xml”) ;
16 XIO . writeUTF (xlayout , out) ;
17 out . c l o s e () ;
18 }
19 catch (IOException ex){
20 ex . pr intStackTrace () ;
21 }

On line 2 the main-frame of the application is given and on line 3 the applications
root DockStation. The first step is to create a new DockSituation on line 5

and add the missing ScreenDockStationFactory on line 6. Then other factories
that are not part of DockingFrames but the application itself can be added like
on line 7. On lines 9, 10 a map with all the root-stations of the application
is built up. Then on line 12 we prepare for writing in xml-format by creating

23

a XElement. The situation converts the dock-tree to xml-format in line 13.
Finally on lines 15-17 the xml-tree is written into a file “layout.xml”.

The next example shows how reading from binary format can look like:

1 try{
2 JFrame frame = . . .
3
4 DockSituat ion s i t u a t i o n = new DockSituat ion () ;
5 s i t u a t i o n . add (new ScreenDockStat ionFactory (frame)) ;
6 s i t u a t i o n . add (new MySpecialFactory ()) ;
7
8 Fi leInputStream f i l e S t r e am = new Fi leInputStream (” layout ”) ;
9 DataInputStream in = new DataInputStream (f i l e S t r e am) ;

10
11 Map<Str ing , DockStation> map = s i t u a t i o n . read (in) ;
12
13 in . c l o s e () ;
14
15 Sp l i tDockStat ion s t a t i o n = (Sp l i tDockStat ion)map . get (” root ”) ;
16 frame . add (s t a t i o n . getComponent ()) ;
17 }
18 catch (IOException ex){
19 ex . pr intStackTrace () ;
20 }

What happens here? In line 2 the main frame of the application is defined. In
lines 4-6 a DockSituation is set up. In lines 8, 9 a file is opened. In line 11

that file gets read by the DockSituation and a map that was earlier given to
write is returned. In line 15 the fact that map was earlier given to write is
used to guess that there is a SplitDockStation with key “root” in the map.
Finally in line 16 that station is put onto the main-frame which now shows the
new elements.

3.3.3 Reuse existing Dockables

The major drawback of the basic algorithms is that they always create new
Dockables and DockStations. It is nearly impossible to just change the lay-
out while an application is running, a layout can only be loaded on startup.
PredefinedDockSituation builds upon DockSituation and extends the algo-
rithms in a way that they can reuse existing dock-elements.

The extended algorithm uses a special DockFactory, called PreloadFactory,
that is wrapped around the factories provided by the client. Writing does
not change much, the PreloadFactory delegates the work just to the original
DockFactory. Reading however is more interesting, the PreloadFactory for-
wards an already existing dock-element to the the original DockFactory which
then updates the layout of the element.

A side effect of this implementation is that for the basic algorithms no factory
seems ever to be missing. In fact the issue of missing factories is just moved to
the PreloadFactory. The PreloadFactory can however store data in its raw
format if necessary.

A PreloadFactory uses a PreloadedLayout as intermediate
format. This PreloadedLayout contains the unique identi-
fier of the original DockFactory and a DockLayoutInfo. The
DockLayoutInfo contains either data in raw format or in the in-
termediate format of the original factory.

24

What happens if a PredefinedDockSituation finds layout information for
an element, has all the necessary factories but not the element itself? The
default behavior is to ignore the information. However it is possible to use
backup-DockFactories. These backup factories will create new elements if the
originals are missing. They are also used when reading raw format and the orig-
inal factory is missing. These backup factories are added through addBackup,
they have to use a BackupFactoryData as intermediate format.

Note that the MissingDockFactory of DockSituation is not used
for elements that were predefined on writing, because for those
elements the PreloadFactory - which is never missing - was used.

The existence of these two sets of algorithms, basic and extended,
lays in the history of DockingFrames. First the basic algorithms
were written. They did their job well for small applications. But
when applications began to grow it became evident that their were
not sufficient. Instead of rewriting them another layer was added.
The division in two sets of algorithms has also the advantage of
reduced complexity.

PredefinedDockSituation is used in the same way as DockSituation. The
only difference is the possibility to predefine elements. The method put can be
used for that. This method expects a unique identifier for any new element.

An example can look like this:

1 DockStation roo tS ta t i on = . . .
2 Dockable f i l eTreeDockab l e = . . .
3 Dockable contentDockable = . . .
4
5 Prede f inedDockSi tuat ion s i t u a t i o n = new Prede f inedDockSi tuat ion () ;
6
7 // setup s i t ua t i on { . . . }
8
9 s i t u a t i o n . put (” root ” , r oo tS ta t i on) ;

10 s i t u a t i o n . put (” f i l e −t r e e ” , f i l eTreeDockab l e) ;
11 s i t u a t i o n . put (” content ” , contentDockable) ;
12
13 // read or wri te { . . . }

In lines 1-3 some DockStations and Dockables are defined. These are the
elements that are always present and need not to be recreated when loading a
layout. In line 5 a new PredefinedDockSituation is created. Then the basic
setup (adding factories, ...) is done in line 7. In the lines 9-11 the predefenied
elements are added to the situation. For each of them a unique identifier is
choosen. Finally in line 13 we can either write or read the layout.

Any String can be used as unique identifier. Small identifiers
with no special characters are however much less likely to attract
any kind of trouble.

25

3.3.4 Exctract local information

It is possible to exctract DockablePropertys from a global layout with the help
of a DockSituation. First the layout data is required in its intermediate format.
This data can only be accessed if the client uses its own format to store layout
data. As an example, storing the layout of one DockStation using XML:

1 public void wr i t e (StackDockStation s ta t i on , DockSituat ion s i t ua t i on ,
XElement out){

2 DockLayoutComposition in te rmed ia te = s i t u a t i o n . convert (s t a t i o n) ;
3 s i t u a t i o n . writeCompositionXML (intermediate , out . addElement (” layout ”)

) ;
4 }

Once the client has acquired the data in its intermediate format it can use
estimateLocations to assign locations to each node in the tree of compositions.
An example using XML:

1 public void read (DockSituat ion s i t ua t i on , XElement in){
2 // acquire intermediate data
3 DockLayoutComposition in te rmed ia te = s i t u a t i o n . readCompositionXML (in

. getElement (” layout ”)) ;
4
5 // guess l oca t i ons
6 s i t u a t i o n . e s t imateLocat i ons (in te rmed ia te) ;
7
8 // get the loca t ion of the root (which w i l l be nul l , because the

root has no parent)
9 DockableProperty l o c a t i o n = inte rmed ia te . getLayout () . getLocat ion () ;

10 }

It is up to the client to find out which DockLayoutComposition represents
which Dockable. A custom DockFactory can help by storing some keys in the
layout which can later be identified by the client.

A DockFrontend will estimate locations of those missing
Dockables for which addEmpty was called.

If using a PredefinedDockSituation, the method
listEstimatedLocations is of interest as it returns a map
of identifier-location pairs. The identifiers are the identifiers of
the Dockables which were added by the client to the situation.

3.4 Perspectives

Layout information appears in different formats, perspectives is one of these
formats. Perspectives offer clients a way to read, modify or build layout infor-
mation using lightweight objects and keeping typesafety.

In order to work with perspectives clients need access to a Perspective

object:

� Any DockSitutation offers a method createPerspective which sets up
a new Perspective using the current settings of the DockSituation.

� DockFrontend offers a method getPerspective. Clients can provide
a FrontendPerspectiveCache which basically converts Dockables and

26

DockStations to their counterparts in the perspective API. This is re-
quired for clients that introduce their own DockFactorys.

The FrontendPerspectiveCache allows clients to use their own,
specialized classes to describe Dockables and DockStations. This
may not be necessary for all clients, these clients can make use of
the DefaultFrontendPerspectiveCache.

Once a Perspective object is aquired it can be used to directly read and
write the xml, binary or the intermediate format. Clients using a DockSituation
should use the convert methods to create or apply the intermediate format.
Clients using a DockFrontend should use the get/setSetting methods in or-
der to access and apply layouts through the intermediate format.

Perspective creates objects of type PerspectiveElement. There are vari-
ous subtypes of this interface, in fact for each type of Dockable or DockStation
of the framework there is a subtype representing exactly that item (e.g.
SplitDockPerspective represents SplitDockStation). Clients are free to
move around elements in any way they wish. However, the perspective API
does not enforce the correctness of the layout, it is the clients responsibility to
build a layout that actually makes sense.

An example showing how to use perspectives to build the layout
is “Persistent Layout: Perspectives”.

3.5 DockFrontend

DockFrontend offers storage for local and for global layout information. Clients
need to register their Dockables through addDockable if they want access to
the full range of storage-features.

Layout information can be stored in xml- or binary-format. The methods
write, writeXML, read and readXML will take care of this.

3.5.1 Local

Whenever hide is called for a registered Dockable its local position gets stored.
If later show is called this position is reapplied and the element shows up at the
same (or nearly the same) location it was earlier.

3.5.2 Global

DockFrontend internally uses a PredefinedDockSituation to store the global
layout. All root-DockStations and all registered Dockables are automatically
added to this situation. The global layout can either be stored on disk or it
can be stored in memory. It is possible to store more than just one layout in
memory and allow the user to choose from different layouts. There are methods
to interact with the layouts in memory:

27

save Saves the current layout in memory. Clients can provide a name for the
layout or use the name of the last loaded layout.

load Loads a layout. The name of the layout is used as key.

delete Deletes a layout from memory.

getSettings Gets a set of names for the different layouts.

getCurrentSetting Gets the name of the layout that is currently loaded, can
be null.

setCurrentSetting If there is a layout with the name given to this method
than that layout is loaded. Otherwise the current layout gets saved with
the new name.

3.5.3 Missing Dockables

The default behavior of DockFrontend is to throw away information for missing
Dockables. It is however possible to change that behavior.

If data needs to be stored for a missing Dockable then DockFrontend uses
an “empty entry”. Clients can define new empty entries by invoking the method
addEmpty. Existing entries can be removed with removeEmpty, with listEmpty

all empty entries can be accessed. Once an entry has been marked as “empty” it
can switch between filled and empty as many times as necessary without loosing
its layout information. The DockFrontend can even store data in raw xml or
binary format and convert this data later once an appropriate DockFactory

becomes known.

“Empty entries” are best to be used if a client already knows the
identifiers of all the Dockables that can eventually be registered
at the DockFrontend.

Another way is to register backup-DockFactories by calling the method
registerBackupFactory. These factories will create new Dockables which are
then automatically registered.

A backup-factory is the strongest weapon against missing infor-
mation. If there is a possibility to use them, use them.

And finally there is the MissingDockableStrategy which can be set using
setMissingDockableStrategy:

� It allows to create “empty entries” automatically. There are two meth-
ods shouldStoreShown and shouldStoreHidden which have to check the
identifiers and to return true to allow a new empty entry.

� It allows to use new DockFactories as soon as they become known. Nor-
mally DockFrontend does not change the layout without the explizit com-
mand from a client (by invoking setSetting directly or indirectly). If

28

shouldCreate returns true however DockFrontend will update the lay-
out as soon as enough information is available to do so.

MissingDockableStrategy should be used when no information
about what is missing is available. It allows to run a “do whatever
is possible”-strategy.

If a strategy allows to store anything and a client often uses differ-
ent identifiers for their Dockables, then layouts will start to grow
and never stop. Don’t forget to delete outdated information.

The interface MissingDockableStragey offers two default imple-
mentations: DISCARD ALL and STORE ALL. The first implementa-
tion is set as default and allows nothing, the second one allows
everything.

29

4 Actions

All Dockables can be associated with some actions. An action normally appears
as some kind of button in the title of a Dockable, they can however appear at
other places as well. There are different types of actions, some may behave like
a JButton others like a JCheckBox, clients can add new types.

Figure 6: A Dockable with a few DockActions in its title and on a popup menu.
The action marked by an arrow is the same object just shown in different views.

The example “Actions” shows how to set up some actions.

Actions are represented by the interface DockAction. Each Dockable has a
list of them represented by a DockActionSource.

If some component wants to show some actions it firsts asks a Dockable

for its global DockActionSource. It then asks each DockAction of that list
to create a view that fits to the component. A title will ask for another kind
of view than a menu. At any time actions can be added or removed from
the DockActionSource and any component showing actions will react on these
events.

The interface DockAction is quite simple. There are two meth-
ods to install (bind) and to uninstall (unbind) the action. One
method to create new views (createView) and one method to
trigger an action programatically (trigger). More useful are
the many subclasses and subinterfaces. StandardDockAction

introduces icons, text and tooltip. Several subinterfaces for
StandardDockAction exist and for all of them a default-view is
provided.

30

There are three levels in the design of DockAction and its sub-
classes. First there is DockAction which allows almost any kind of
Component to be used as view. Second there are subinterfaces for
the standard tasks, the framework provides views for them. Third
are real implementations of the second-level interfaces. Some in-
terfaces are implemented in more than one action for different
styles of aplication organization.

4.1 Show Actions

Assuming one has a DockAction, how can the framework be advised to show
it?

4.1.1 List of Actions

DockActions never travel alone in this framework. They always travel with
other actions in a DockActionSource. Actions can be added or removed from
DockActionSources at any time and modules showing actions will react on this.

Most methods of DockActionSource can be understood without explana-
tion. The method getLocationHint is an exception. It returns a LocationHint

which is used to order several DockActionSources into a list (and treat them
as one big DockActionSource). Clients which implement an ActionOffer can
also introduce new kind of LocationHints.

LocationHints consists of an Origin and a Hint. The hint tells
the preferred location in respect to other elements, the origin are
used if multiple hints collide. New Hints and Origins can be
written.

4.1.2 Source of Actions

Actions have different sources, each kind of source has a specific purpose.

� The local action source is part of every Dockable. This source is ac-
cessed through getLocalActionOffers. If AbstractDockable or a sub-
class like DefaultDockable is used then setLocalActionOffers allows
to quickly set and exchange the actions. This source of actions should be
used for actions that are closely linked with some Dockable.

� ActionGuards can add actions to every Dockable. An ActionGuard is
added to a DockController through addActionGuard. Its method react

will be called whenever the actions of a Dockable are searched. If react
returns true then the method getSource is called. This source of actions
is intended for general purpose actions and for actions which need a special
position in the list of actions (e.g. a close-action needs to be at the very
end).

� Every DockStation can add direct and indirect action offers to its chil-
dren. For this DockStation has two methods getDirectActionOffers

31

and getIndirectActionOffers. Direct action offers are used only
for true children, indirect action offers can be applied to grand-
children as well. These sources of actions are intended for actions that
are linked to a DockStation, like the maixmimze-action that can be seen
on a SplitDockStation.

Two mechanisms are responsible for collecting all the actions from these dif-
ferent sources and to put them into a list. Clients can adjust these mechanisms
even to a point where they no longer collect actions but introduce their own
actions.

� Every DockController has at least one ActionOffer. An ActionOffer

has two methods: interested tells whether the offer is interested in man-
aging a certain Dockable and getSource collects the actions of an inter-
esting Dockable. The primary function of an ActionOffer is to order the
various sources. It is up to the offer to decide how to actually do the sort-
ing. The default ActionOffer uses the LocationHint which is attached
to every DockActionSource.

Clients can use addActionOffer and setDefaultActionOffer to change
the offers of a DockController. The public method listOffers then
advises the controller to use one of its offers.

� Modules which need a list of actions call getGlobalActionOffers from
Dockable. This method is the ultimate piece of code which decides what
to show. Usually the method is implemented by returning an instance of
HierarchyDockActionSource. However, this method can ignore anything
that has been said in this chapter and introduce its very own mechanism
to collect actions.

Most Dockables will utilize HierarchyDockActionSource instead
of implementing getGlobalActionOffers. This special source
observes the hierarchy of a Dockable and changes its content auto-
matically. Dockables using HierarchyDockActionSource should
bind the source. They need to call update if their own local action
source is exchanged.

It is generally a bad idea to write DockActionOffers or
getGlobalActionOffer methods which do not just collect ac-
tions. There are already mechanisms to introduce DockActions
and they should suffice for every possible situation.

4.2 Standard Actions

There are a number of standard actions in the framework. Clients can either
subclass them or instantiate and add listeners to them. A user would put the
actions into six groups:

32

Button If the user clicks this action then always the same thing happens. The
interface ButtonDockAction collects all the buttonlike actions.

Checkbox When triggered it changes some property from true to false or
from false to true. All actions with this behavior implement the interface
SelectableDockAction.

Radiobutton Like a group of checkboxes, but only one radiobutton can be se-
lected within that group. Like checkboxes all these actions are represented
by SelectableDockAction. Several radiobuttons can be linked together
with the help of a SelectableDockActionGroup.

Menu A menu just contains a list of other DockActions. These other actions
are normally hidden and only shown if the user wants to see them. Menus
are implementing the interface MenuDockAction.

Drop-down-button Like a menu but the last triggered action can be trig-
gered again without opening the menu. The interface DropDownAction

represents these special menus.

Separator A separator just is a line, a graphical element to divide a set
of actions into subsets. Separators are implemented through the class
SeparatorAction.

4.2.1 Simple actions

Simple actions are a set of classes that implement the various action-interfaces.
These simple actions do not have any advanced features and should be quite
simple to use. An example might be the following code:

1 public c lass ExampleAction extends SimpleButtonAction{
2 public ExampleAction () {
3 setText (”Run . . . ”) ;
4 s e t I c on (new ImageIcon (”example . png”)) ;
5 s e tToo l t i p (”Run the example”) ;
6 }
7
8 @Override
9 public void ac t i on (Dockable dockable) {

10 System . out . p r i n t l n (”kabum”) ;
11 }
12 }

Here the class SimpleButtonAction is used. The action is subclassed by
ExampleAction. In lines 3-5 properties like the icon are set. The subclass
overrides the method action (lines 9-11) which is invoked every time when the
user presses the button.

The available simple actions are:

� SimpleButtonAction: For creating buttons. Can either be subclassed
(like in the example above) or just instanciated. Clients can add instances
of the well known ActionListeners which will be invoked when the user
presses the button. Exaclty like a JButton.

� SimpleSelectableAction.Check and SimpleSelectableAction.Radio:
For creating checkboxes and radiobuttons. Clients can add instances of
SelectableDockActionListener to be informed whenever the state of
the action changes. A SelectableDockActionGroup can be used to make
sure that only one action out of a set of actions is selected at any time.

33

� SimpleMenuAction: For creating menus. The method setMenu takes a
DockActionSource and the content of this source will be shown.

� SimpleDropDownAction: For creating drop down menus. Has methods to
get and set the selection, and methods to add or remove actions from the
menu.

4.2.2 Group actions

Group actions are DockActions that can be used for many Dockables at once
even with different properties for each Dockable. To be more precise, a
GroupKeyGenerator will assign a key to each Dockable. If any view asks the
action for a property (like the icon) this key will be used to search the property
in a map. All the group actions extend the class GroupedDockAction.

Let’s have a look at an example. The following action behaves like a check-
box. Its unique feature is the text that changes if the selected-state changes.

1 import b i b l i o t h ek . gui . Dockable ;
2 import b i b l i o t h ek . gui . dock . ac t i on . a c t i on s . GroupKeyGenerator ;
3 import b i b l i o t h ek . gui . dock . ac t i on . a c t i on s . GroupedSelectableDockAction ;
4
5 public c lass ExampleGroupAction extends
6 GroupedSelectableDockAction . Check<Boolean> {
7 public ExampleGroupAction () {
8 super (new GroupKeyGenerator<Boolean>(){
9 public Boolean generateKey (Dockable dockable){

10 return dockable .<getSomeProperty ()>;
11 }
12 }) ;
13 setRemoveEmptyGroups (fa l se) ;
14
15 s e t S e l e c t e d (Boolean .FALSE, fa l se) ;
16 s e t S e l e c t e d (Boolean .TRUE, true) ;
17
18 setText (Boolean .FALSE, ”Unse lected ”) ;
19 setText (Boolean .TRUE, ” Se l e c t ed ”) ;
20 }
21
22 @Override
23 public boolean t r i g g e r (Dockable dockable) {
24 s e t S e l e c t e d (dockable , ! i s S e l e c t e d (dockable)) ;
25 return true ;
26 }
27
28 @Override
29 public void s e t S e l e c t e d (Dockable dockable , boolean s e l e c t e d){
30 dockable .< setSomeProperty (s e l e c t e d)>;
31 setGroup (s e l e c t ed , dockable) ;
32 }
33 }

The constructor (lines 7-20) sets up the action. First the GroupKeyGenerator

is set in lines 9-12. The key is a Boolean which represents “some property” of
a Dockable. The meaning of the property is not important. Through the keys
Dockables get grouped. When Dockables get added and removed a group may
become empty. Line 13 ensures that the action does not delete the properties
of empty groups.

A Boolean only has two states, both states will be used as key. So there
is a “true” and a “false” group. The selected-state of the action should match
the key of the group. In other words: if “some property” is true then the
action is selected, if “some property” is false then it is not. Lines 15, 16 are
responsible for this setting. The same behavior is enforced for the text of the
action in lines 18, 19.

34

Another example is “Actions: GroupAction” showing an action
with more than two keys.

The standard behavior of a SelectableDockAction is to change its selected
state as soon as the user triggers the action. If the action is used for many
Dockables than this behavior would look rather odd. All the actions would
change their state and most of them would do so wrongly. By overriding the
method trigger this problem can be prevented (lines 23-26). Instead of chang-
ing the selected state of the action, the group of the Dockable is changed by
invoking setSelected in line 24. Since the two groups have different selection
states the user will think that the action changed the state.

By the way: the method setSelected in lines 29-32 needs to be overriden
since the default behavior is to change the state of the action, not to change the
group of a Dockable.

Be careful when using group actions: they are complex to handle.
In many cases a simple action can replace a group action.

Group actions were introduced for DockStations. DockStations
need to apply the same actions to many Dockables. Instead of
setting up new actions all the time it was easier to have one action
that holds many properties at the same time.

There are only three group actions implemented:

� GroupedButtonDockAction

� GroupedSelectableDockAction.Check

� GroupedSelectableDockAction.Radio

4.3 Custom actions

Clients are free to implement new actions with new views.

4.3.1 Reuse existing view

Whenever possible an existing view should be reused. There are six kind of
views defined in the framework. Each kind of view is represented through an
instance of ActionType, each of them is stored as constant in ActionType

itself. ActionType has one generic parameter, the view can force an action
to implement some interface through that parameter. For example, the kind

35

ActionType.BUTTON forces an action to implement ButtonDockAction. Actions
can use an ActionType as key for a factory that is stored in the
ActionViewConverter.

An example for an action that uses an ActionType to create its view:

1 public c lass ExampleButtonAction implements ButtonDockAction{
2
3 public <V> V createView (ViewTarget<V> target ,
4 ActionViewConverter converter , Dockable dockable){
5
6 return conver t e r . createView (ActionType .BUTTON, this ,
7 target , dockable) ;
8 }
9

10 public void ac t i on (Dockable dockable){
11 [. . .]
12 }
13
14 public Icon get Icon (Dockable dockable){
15 return [. . .] ;
16 }
17
18 [. . .]
19 }

Really important are the lines 3-8: these lines are all that is necessary to
create different button-views for different environments (menu, title). The
ActionViewConverter does all the work, it just has to be called with the correct
parameters.

The interface ButtonDockAction declares other methods like getIcon (lines
14-16) which will not be a challenge to implement.

4.3.2 Custom view

Writing a custom action with custom view is possible, but will require a lot
of work. Some good news: it is only necessary to implement the interface
DockAction and the raw interface DockAction has only very few methods. The
greatest challenge will be to write the method createView. This method can
be called any time and receives a ViewTarget, a ActionViewConverter and
the Dockable for which the view will be used. It has to return either null or
the type of object that is specified as the generic parameter of ViewTarget.
The framework will always use the same three instances of ViewTarget, all of
them are stored as constants in ViewTarget itself. So in theory a createView

could check which of the three ViewTargets it received and create one of three
different views. In practice it is much better to use the ActionViewConverter

for this task.
You might remember that the ActionViewConverter can instanciate new

views if an ActionType is given to its createView method. So the first step
should be to introduce a new ActionType. Only the second step is to write the
new action-class. This could result in something like this:

1 import b i b l i o t h ek . gui . Dockable ;
2 import b i b l i o t h ek . gui . dock . ac t i on . ActionType ;
3 import b i b l i o t h ek . gui . dock . ac t i on . DockAction ;
4 import b i b l i o t h ek . gui . dock . ac t i on . view . ActionViewConverter ;
5 import b i b l i o t h ek . gui . dock . ac t i on . view . ViewTarget ;
6
7 public c lass CustomAction implements DockAction{
8 public stat ic f ina l ActionType<CustomAction> CUSTOM =
9 new ActionType<CustomAction>(”custom”) ;

10

36

11 public <V> V createView (ViewTarget<V> target ,
12 ActionViewConverter converter , Dockable dockable){
13 return conver t e r . createView (CUSTOM, this ,
14 target , dockable) ;
15 }
16
17 @Override
18 public void bind (Dockable dockable){
19 // ignore
20 }
21
22 @Override
23 public void unbind (Dockable dockable){
24 // ignore
25 }
26
27 public boolean t r i g g e r (Dockable dockable){
28 return fa l se ;
29 }
30 }

Now the ActionViewConverter needs to be instructed of what to do with the
ActionType CUSTOM. This should be done on startup, before the first
CustomAction is even created. The ActionViewConverter is accessible through
the DockController. A client can call putDefault to set the default view fac-
tory for some type and target:

1 DockContro l ler c o n t r o l l e r = . . . ;
2 ActionViewConverter conver t e r = c o n t r o l l e r . getActionViewConverter () ;
3
4 ViewGenerator<CustomAction , BasicTit leViewItem<JComponent>> generator =
5 new CustomButtonGenerator () ;
6
7 conver t e r . putDefault (CustomAction .CUSTOM, ViewTarget .TITLE,
8 generator) ;

In this code the converter is accessed in line 2. Some new factory is created in
lines 4, 5 and this new factory is registered at the converter in lines 7, 8. The
CustomButtonGenerator is just a class that implements ViewGenerator:

1 public c lass CustomButtonGenerator implements
2 ViewGenerator<CustomAction , BasicTit leViewItem<JComponent>>{
3 public BasicTit leViewItem<JComponent> c r e a t e (
4 ActionViewConverter converter , CustomAction act ion ,
5 Dockable dockable){
6
7 return [. . .]
8 }
9 }

Set a ViewGenerator for ViewTarget.TITLE, ViewTarget.MENU
and for ViewTarget.DROP DOWN. Even if these generators do not
create views but just return null, not installing them would lead
to an error.

37

5 Titles

A DockTitle is a Component that may show an icon, a text, some DockActions
or other information about a Dockable. Users often grab a DockTitle when
they want to start a drag & drop operation.

Figure 7: Some DockTitles.

5.1 Lifecycle

Any client that wants to show a DockTitle needs to specify what kind of title
it shows and needs to request a title.

The kind of a title is specified by a DockTitleVersion. New
DockTitleVersions are obtained through the DockTitleManager (there is one
per DockController). Creating a new DockTitleVersion requires the calling
client to provide a default DockTitleFactory.

The request for a title is handled by a DockTitleRequest. Once a
DockTitleRequest is created its method request can be called to execute the
request. Clients should call install before using the request and uninstall

once the request is no longer in use. This way the DockTitleRequest will auto-
matically be executed again if the underlying DockTitleFactory is exchanged.

Once a DockTitle is acquired it must be connected with its Dockable.
Clients must call the method bind(DockTitle) of Dockable, this tells the
Dockable that is has a new title. If the client no longer shows the title it must
call unbind(DockTitle).

Do not call the method bind or unbind of DockTitle, these meth-
ods are called automatically by the DockController.

38

Dockables provide some information about their titles:

� The method listBoundTitles returns an list of all
DockTitles which are currently in use for the Dockable.

� A DockableListener has several methods that will be in-
voked if titles get added, removed, updated or exchanged.

5.2 Custom titles

5.2.1 Implementing a new title

It is possible to replace all the titles in the framework. While the interface
DockTitle is rather open, a title is responsible to collect all the information it
wants to show by itself.

Most titles will have a constructor that has a Dockable as argument. They
will add a DockableListener to their Dockable once bind is called and remove
the listener once unbind is called.

There is only one connection between a module that shows a title and the ti-
tle itself: the method changed. Modules use this method to send
DockTitleEvents to the title.

A module does not need to know what title it shows. It just
delivers the DockTitleEvent to the title. The module can use
a subclass of DockTitleEvent to transfer more information than
DockTitleEvent alone could carry. This design allows to use
any implementation of DockTitle at any place while some titles
still can use additional information from their environment. An
example is the EclipseDockTitleEvent which is used by tabs.
This event also tells the titles at which location they are and
whether their tab is focused or not.

There are some classes that can help implementing a custom title:

� AbstractDockTitle provides standard implementations for most of the
features a title requires. Subclasses only need to override the method
paintBackground to have their custom painting code used.

� BasicDockTitle paints some gradients as background. Clients can change
the color of these gradients. This title is also a good reference of how things
can be done.

� ButtonPanel is a Component able to display a set of DockActions.
ButtonPanel is able to show a popup-menu if there is not enough space
for all actions.

39

In order to use the popup menu of ButtonPanel some special
code has to be written. First: the argument menu of the construc-
tor of ButtonPanel has to be set to true. Second: the method
getPreferredSize of ButtonPanel cannot be used, any stan-
dard LayoutManager will fail. Instead the method doLayout of
the Container which shows the panel can be overriden. In this
doLayout method the container should call getPreferredSizes
to obtain a list of possible sizes of the panel. The n’th dimension
in this array tells how big the ButtonPanel would be if it would
show n actions. The container should choose the biggest possible
n and call setVisibleActions.

An example showing a custom title is “DockTitle: Custom title”.

5.2.2 Apply the title

There are several ways to introduce a custom title into the framework.
To override or implement requestDockTitle of Dockable is the simplest

way. The method just creates a new instance of the custom title when called.
Overriding or implementing requestChildDockTitle of DockStation al-

lows to exchange the title of all children.
The DockTheme can be used as well. Either override the method

getTitleFactory or call setTitleFactory when using a BasicTheme. With
a few exceptions all the modules use the factory of the theme, hence replacing
this factory will have a big effect.

Or use the DockTitleManager to make some better tuned settings. The
DockTitleManager can be accessed by calling getDockTitleManager of
DockController. Search the unique string identifier of the module that uses
a title and call getVersion to access the associated DockTitleVersion. Then
with the help of setFactory a new factory can be introduced. In code this
could look like this:

1 DockContro l ler c o n t r o l l e r = . . .
2
3 DockTitleManager manager = c o n t r o l l e r . getDockTitleManager () ;
4 DockTit leVers ion ve r s i on =
5 manager . getVers ion (Sp l i tDockStat ion . TITLE ID , null) ;
6 v e r s i on . se tFactory (new CustomDockTitleFactory () , P r i o r i t y .CLIENT) ;

40

6 Themes

A DockTheme relates to DockingFrames like a LookAndFeel to Java Swing.
At any given time a DockController is associated with exactly one theme.
The theme defines various graphical elements like icons, painting code and also
some behavior. The current DockTheme can be changed through the method
setTheme:

1 DockContro l ler c o n t r o l l e r = . . .
2 DockTheme theme = new EclipseTheme () ;
3 c o n t r o l l e r . setTheme (theme) ;

6.1 Existing Themes

Several DockThemes are already included in the framework. A list of theme-
factories can be accessed through the method getThemes of DockUI. This sub-
chapter will list up the existing themes and mention some of their specialities.

Keep in mind that DockThemes do not have to follow a specific path for
setting up their views. All the current themes are derived from BasicTheme

and thus share a lot of concepts. Future or custom themes however might be
implemented in different ways.

6.1.1 NoStackTheme

This theme is a wrapper around other themes. It prevents StackDockStations
from having a DockTitle and makes sure that the user cannot drag or create
a StackDockStation into another StackDockStation. The code for creating a
NoStackTheme looks like this:

1 DockTheme o r i g i n a l = . . .
2 DockTheme theme = new NoStackTheme (o r i g i n a l) ;

6.1.2 BasicTheme

The BasicTheme is a simple but working theme. All the other themes of the
framework build upon BasicTheme. This theme shows content whenever possi-
ble. It tries to use all features and thus is quite good for debugging, to check
whether all features are supported.

Figure 8: BasicTheme

41

6.1.3 SmoothTheme

SmoothTheme is basically the same as BasicTheme. The only difference is a
replaced default-DockTitleFactory. As a result new DockTitles are used by
most elements, these new titles smoothly change their color when the “active”
state of their Dockables changes.

6.1.4 FlatTheme

FlatTheme is a variation of BasicTheme that tries to minimze the number
of borders. Among other things it uses new DockTitles and new views for
DockActions. It is the ideal theme for developers that want to learn how to
customize an existing theme.

Figure 9: FlatTheme

6.1.5 BubbleTheme

A more experimental theme. BubbleTheme often uses animations and other
graphical gimmicks. It has a few performance issues, but it is a good theme to
demonstrate the potential of the theme-mechanisms.

Figure 10: BubbleTheme

42

6.1.6 EclipseTheme

EclipseTheme tries to mimmic the behavior and look of the well known IDE
Eclipse. All the Dockables are shown on tabbed-components and often
DockTitles are replaced by the tabs. The theme does not use the default
theme-mechanisms as often as other themes and it might be a bit tricky to
customize the theme. On the other hand it certainly looks good.

Figure 11: EclipseTheme

EclipseTheme offers some keys the map of properties that is stored in
DockProperties. The keys are:

PAINT ICONS WHEN DESELECTED A Boolean that tells whether
icons on tabs should be painted if the tab is not selected. In every tabbed-
component one tab has to be selected and its associated Dockable is the
only visible element on the component.

THEME CONNECTOR An EclipseThemeConnector. The connected tells
whether a DockAction belongs onto a tab, or in a separate list of “unim-
portant” actions. The connector also tells what kind of title to use for a
Dockable.

TAB PAINTER A TabPainter. This class is a factory that creates the tab-
components and sets up other settings that are related with tabs.

The DefaultEclipseThemeConnector puts every DockAction

which is annotated with EclipseTabDockAction onto tabs.

The settings for titles and borders that are given by an
EclipseThemeConnector are not respected if the element is on
a StackDockStations. A StackDockStation always uses some
tabbed-component.

43

6.2 Custom Theme

With the exception of the classes that are directly related to a DockTheme no
code in the framework depends on a special undocummented behavior of a
theme. Clients can reimplement the interface DockTheme without fear to break
things.

A better approach then full reimplementation might be to extend the class
BasicTheme. This class provides some default values which can easily be
changed by the appropriate setXZY method.

DockTheme has a method install, this method can be used to exchange
some values that are not stored in the DockTheme itself. For example to exchange
icons in the IconManager.

A theme dives deep into the framework. Implementing a new
theme requires a lot of time and a good understanding of the
framework. This document might help to understand the basics,
but some stuff can only be found out by looking directly at the
source code.

6.3 Customizing

More than 50% of the frameworks source code is only used for painting stuff.
No DockTheme uses particular complex code, just the mass can lead to some loss
of direction. This sub-chapter will give only an overview of the basic classes,
interfaces and concepts.

Many of the mechanisms used by DockThemes can be used by
clients as well.

6.3.1 UI-Properties

The UIProperties distribute properties like colors, texts or fonts in the frame-
work. The basic idea is to use a map. The keys are Strings, the values are the
properties. A DockTheme or a client can modify or put new key-value pairs into
the map and components can read those values which are interesting for them.

While UIProperties build upon a map, they can do more than an ordi-
nary map. They report changes in the map through an observer mechanism
represented by UIValues. Further more they can filter their content through
UIBridges.

The full list of classes and interfaces building the base for the UI-properties
consists of:

� UIProperties: The map that connects properties, observers and filters.

� V: The type of the properties, e.g. the class Color.

� UIValue: An observer that is attached to UIProperties and receives an
event if a property changes. The UIValue has to provide information to

44

the filters, that means an UIValue represents the component that is using
the property.

� UIBridge: An UIBridge is a filter between the UIProperties and the
UIValues. An UIBridge can decide to inform an UIValue about a changed
property at any time. Depending on the target UIValue an UIBridge may
filter the property in different ways.

� UIScheme: a set of default properties and default UIBridges.

The implementation gets more complex:

� For each key several V properties can be put into the map. Each value
gets assigned another priority (“default”, “theme” or “client”) and only
the one with the highest priority is used.

� Each UIValue is associated with a Path. The Path tells what type the
UIValue has.

� UIBridges are also associated with a Path. An UIBridge is responsible to
handle all those UIValues that are associated either with the same Path

or a Path that has the bridges Path as prefix.

This scheme allows a flexible handling of resources. On one hand
the number of keys is limited and one method call is enough to
change a lot things in the user interface (e.g. all background colors
of titles). On the other hand clients can implement sophisticated
strategies to change some properties without the need to know in
detail how the property will be used.
Originally this mechanism was invented to handle Colors. Then
it became evident that the same mechanism could be used for
other resources as well. The current implementation requires to
implement several classes for each type of resource. While this
might be annoying for the first use it ensures type safety. In a
system where cause (writing in the map) and effect (reading from
the map) can be separated by dozens of classes and an unknown
amount of time one does not want to care about types as well.

There are several subclasses of UIProperties, each of these classes handles
another kind of property:

� ColorManager handles Colors.

� FontManager handles Fonts. Rather than distributing Fonts directly, this
class distributes FontModifiers. A FontModifier can use the default
font of a component slightly modify it (e.g. make it italic), or just replace
the font.

� IconManager handles Icons.

� TextManager handles language dependent text.

45

� ThemeManager is not directly a subclass, but offers a similar interface. It
is responsible for distributing factories and strategies used all over the
framework.

6.3.2 Colors

In order to understand this chapter 6.3.1 should be read first.
All the colors used in the framework are handled by the ColorManager. The

ColorManager is an UIProperties and can be accessed through the
DockController. It’s use could look like this:

1 DockContro l ler c o n t r o l l e r = . . .
2 ColorManager c o l o r s = c o n t r o l l e r . ge tCo lo r s () ;
3 c o l o r s . put (P r i o r i t y .CLIENT, ” t i t l e . a c t i v e . l e f t ” , Color .GREEN) ;

In this snippet the value for the key “title.active.left” is changed to green. The
priority CLIENT is highest possible priority. It is never overridden by the frame-
work.

Or a more sophisticated use could involve a ColorBridge:

1 DockContro l ler c o n t r o l l e r = . . .
2 ColorManager c o l o r s = c o n t r o l l e r . ge tCo lo r s () ;
3 c o l o r s . pub l i sh (P r i o r i t y .CLIENT, T i t l eCo lo r .KIND TITLE COLOR, new

ColorBridge () {
4 public void add (St r ing id , DockColor uiValue){
5 // ignore
6 }
7 public void remove (St r ing id , DockColor uiValue){
8 // ignore
9 }

10 public void s e t (S t r ing id , Color value , DockColor uiValue){
11 T i t l eCo lo r t i t l e = (T i t l eCo lo r) uiValue ;
12 i f (t i t l e . g e tT i t l e () . getDockable () == <somevalue>)
13 t i t l e . s e t (Color .GREEN) ;
14 else
15 t i t l e . s e t (va lue) ;
16 }
17 }) ;

Here a ColorBridge for the Path KIND TITLE COLOR is installed in line 3.
This path is only used by UIValues that implement TitleColor. Hence the
unchecked cast from DockColor to TitleColor in line 11 is safe. The meth-
ods add (line 4-6) and remove (line 7-9) are called by UIProperties when a
UIValue gets added or removed to it. These methods can be ignored as long
as the bridge does not change the color on its own. Otherwise the DockColors
could be stored in some list and their method set could be called whenever the
color needs to be exchanged.

This bridge searches for a specific Dockable called “somevalue” (line 12).
The bridge returns GREEN for all colors used by any title of this Dockable. There
is no distinction between the colors for background, foreground or other usages.

An example showing the same things as the snippets is “UI Prop-
erties: Color”

46

There is no global list of keys and every DockTheme uses
different keys. All the modules that need colors are anno-
tated with ColorCodes and expose their own list of keys to
the API-documentation. Also the various implementations of
ColorScheme can be used to find keys.

All the standard themes use a ColorScheme as their ini-
tial set of colors. All the standard themes provide a key
for the DockProperties to change that initial scheme. For
example the key provided by BasicTheme is stored as con-
stant BASIC COLOR SCHEME. There are several subclasses of
ColorScheme for the different themes.

By the way: some themes use colors that are read from the current
LookAndFeel. Clients can call the method registerColors of DockUI. This
method takes a LookAndFeelColors which is responsible in reading the colors
from the LookAndFeel.

6.3.3 Fonts

Fonts use the same mechanism as Colors. A FontManager can be accessed
through the methods getFonts of DockController. Unlike colors a set of
standard keys are defined as constants in DockFont.

The FontManager does not distribute Font-objects but FontModifiers. A
FontModifier has one method that receives the original Font and can return
any Font it likes. In example a FontModifier could inverse the bold-property
of a Font. There are two FontModifiers ready to use:

� ConstantFontModifier does not modify anything but always return the
same Font

� GenericFontModifier can modify the italic-, bold- and size-property of
a font.

Clients that want to use a FontModifier might be interested
in the classes DLabel and DPanel which already modify their
font. Also the class FontUpdater can be used to create new
JComponents with the capability to modify their font.

6.3.4 Icons

Icons can be modified through the IconManager. The IconManager can be ac-
cessed through the method getIcons of DockController. It is an
UIProperties and offers all the methods that are known from colors and fonts.

There is no global list of keys in the source code. However the file “icons.ini”
contains a list of keys and paths of all the default icons.

47

6.3.5 Text

Language dependend text is distributed by the TextManager, it can be accessed
through DockController.getTexts(). The TextManager is an UIProperties

and offers all the methods that are known from colors and fonts.
The default text for different languages is stored in several *.properties

files. These files can be loaded by ResourceBundles. Clients can make use of
the class DefaultTextScheme to load additional languages into the framework.

6.3.6 Actions

The views for DockActions are changed through the ActionViewConverter.
Please read chapter 4 for more information.

6.3.7 Titles

DockTitles are managed by the DockTitleManager. Please read chapter 5 for
more information.

6.3.8 Border

Any Border can be modified or replaced by a BorderModifier.
BorderModifiers can be set by the ThemeManager. The BorderModifier

interface works in the same way as the FontModifier interface.

6.3.9 Background

The usual background of a Component is either grey or transparent. Clients
can set a painting algorithm for the background with help of the interface
BackgroundPaint. Instances of BackgroundPaint are applied through the
ThemeManager.

The method paint of BackgroundPaint is called every time when a compo-
nent has to be repainted. The method receives a PaintableComponent which
offers the standard algorithms to paint border, children and other stuff. The
BackgroundPaint can freely decide what to paint and in which order to paint.

6.3.10 Drag and drop decorations

During drag and drop operations DockStations use a StationPaint to paint
decorations. The StationPaint can be set through the ThemeManager.

6.3.11 Displayers

A DockableDisplayer is a wrapper around a Dockable painting some decora-
tions like a title or some border. All DockStations make use of
DockableDisplayers to paint their children. DockableDisplayers are created
by DisplayerFactorys which are accessible through the ThemeManager.

Once a DockableDisplayer is created it cannot be replaced until either the
theme is exchanged or the displayer marks itself as invalid. In the later case the
displayer needs to call the discard method of any DockableDisplayerListener

that was added to it.

48

Clients are free to implement new displayers or extend existing displayers.
Any new displayer should be a focus-cycle-root, assuming the displayer uses
Swing-components the code below can be used to setup the correct focus man-
agement:

1 // the new d i sp l ayer
2 DockableDisplayer d i s p l a y e r = . . .
3
4 JComponent root = (JComponent) d i s p l a y e r . getComponent () ;
5
6 root . s e tFocusab le (true) ;
7 root . setFocusCycleRoot (true) ;
8 root . s e tFocusTrave r sa lPo l i cy (
9 new DockFocusTraversalPol icy (

10 new Disp layerFocusTraver sa lPo l i cy (d i s p l a y e r) , true)) ;

49

7 Stations in depth

DockStations are the most complex classes, or modules, of the framework.
Some of the stations offer fine tuning that could be interesting for the more
ambitious projects, the goal of this chapter is to show some of the these advanced
configuration options. In no way can this chapter replace studying the API
documentation and the source code itself. Before reading this chapter you should
read about the Basics (page 9), it offers a nice overview of the stations.

7.1 ScreenDockStation

This station packs its children into free floating panels. These panels are called
windows, and can be moved and resized by the user.

7.1.1 Window type

The windows (of type ScreenDockWindow) are usually JDialogs. The reason
for this is, that a JDialog is guaranteed to float over its parent frame. In
some applications however a JDialog is not the correct tool, in these cases a
client can implement custom ScreenDockWindows or reuse and configure some
of the existing windows. For this to happen a client has to implement a
ScreenDockWindowFactory and use the property key
ScreenDockStation.WINDOW FACTORY to set it. The factory may be an instance
of DefaultScreenDockWindowFactory with non-default settings.

� ScreenDockDialog is the default window.

� ScreenDockFrame is exactly the same as the dialog, just
using a JFrame instead.

� InternalDockDialog is a dialog that can appear on a
JDesktopPane. If using this window, the client should also
install an InternalFullscreenStrategy.

� DefaultScreenDockWindowFactory offers several methods
to configure the dialog, including an option to show the OS
dependent controls.

New implementations of ScreenDockWindow should be subclasses
of AbstractScreenDockWindow. This class offers everything a
window needs except the window-container itself.

Should a client implement a completely new ScreenDockWindow, then it
will be required to implement a matching ScreenDockFullscreenStrategy.
Accessing the MagnetController and use its start method will allow the new
window to feature attraction and stickiness.

50

7.1.2 Window configuration

The look and behavior of each default ScreenDockWindow can be configured,
some of the available options are:

� Whether the window is transparent

� Whether the window can be resized by the user

� To move if the title of a Dockable is dragged

� What kind of border to paint

All these options are set by the ScreenDockWindowConfiguration, which really
is just a factory creating new instances of WindowConfiguration. The factory
can be set using the property key ScreenDockStation.WINDOW CONFIGURATION.

Do not subclass WindowConfiguration. Use the set-methods to
change its properties.

7.1.3 Stickiness and attraction

What happens when a window is dragged near another window? Or if two
windows touch each other and one of them is dragged away? The framework
offers some special behavior in these cases:

� A window dragged near another window can be attracted to the fixed
window. The dragged window will move itself a little bit such that the
sides of the windows touch each other.

� A window dragged away from a neighbour can be sticking to the neigh-
bour. If one window is dragged, the neighbours are automatically dragged
as well.

The exact behavior of each window is defined by the AttractorStrategy.
Clients can set up their own strategy by using the property key
ScreenDockStation.ATTRACTOR STRATEGY.

The actual implementation of attracting and sticking windows is
provided by the MagnetStrategy, which can be replaced using
the property key ScreenDockStation.MAGNET STRATEGY. Clients
providing their own MagnetStrategy may be interested in using
the StickMagnetGraph, a class that analyzes the layout of the
windows and their dependencies.

7.1.4 Fullscreen

Since a standard JDialog can not be maximized, and the ScreenDockWindows
usually are JDialogs, the framework must find out on its own when a window
is maximized. This property, also called “fullscreen”, is defined by the interface

51

ScreenDockFullscreenStrategy. Replacing it usually makes little sense, but it
can be done using the property key ScreenDockStation.FULL SCREEN STRATEGY.

It seems like there can be only one definition of “fullscreen”.
But because the framework does nowhere enforce that a
ScreenDockWindow indeed is a real window, it does neither de-
fine what a “screen” could be. And it is really hard to globally
define “fullscreen” when there is no definition of “screen”.

7.1.5 Drop size

What happens when a Dockable is dropped onto a ScreenDockStation? It
is put into a window, but how big should this window be? The default be-
havior of the framework is to look at the current size of the Dockable, and
keep that size. Another solution could be to make sure the Dockable has its
preferred size. A client can change the default behavior by implementing a
ScreenDropSizeStrategy, and installing it using the property key
ScreenDockStation.DROP SIZE STRATEGY.

7.2 SplitDockStation

The SplitDockStation organizes its children in a layout that might look at
first glance like a grid, but in reality is a binary tree. Each Dockable is a leaf
in that tree. Any node has an orientation (horizontal or vertical) telling how
its children are aligned, and a divider property telling the relative size of the
children. Users modify the tree through drag and drop, but clients can access
and modify the tree programatically.

7.2.1 The tree

The layout-tree is represented by objects of type SplitNode. Each node can be
seen as a rectangle on the screen, and the children of each node must be within
that rectangle. To be more precise, there are four different types of nodes in
the tree:

� The Root node really has no special meaning, it is just a wrapper around
another node promoting that other node to be the true root.

� A Node has exactly two children. The node has an orientation that tells
how the children are aligned, and it has the divider property, a double

between 0 and 1.0, telling the size of the first child in respect to the size
of the node itself.

� A Leaf is a wrapper around a Dockable.

� Finally a Placeholder is not visible to the user. When a Leaf is removed
from the tree a Placeholder may remain. This placeholder can later be
converted back into the Leaf that was removed.

Clients can access the tree by calling SplitDockStation.getRoot.

52

Usually modifying the tree directly is a bad idea. When modifying
the tree, be aware of:

� The tree does not validate itself, if a client creates an invalid
tree the application will simply show a very strange layout
or start throwing exceptions.

� Removing or adding branches to the tree does not automat-
ically remove or add Dockables.

Instead of accessing the tree directly, and perhaps causing a lot of damage,
clients can make use of the class DockableSplitDockTree. A client can create
a new SplitDockTree and call SplitDockStation.dropTree to replace the
current layout of the station.

SplitDockTree may look very hard to use, many methods need
to be called just to build a simple tree. But there are some ad-
vantages that should be considered:

� This class is very safe to use, it is nearly impossible to create
an invalid tree with it.

� The tree is built from bottom to top, it is an ideal tool to
have different methods build and deliver different branches
of the tree.

� A SplitDockGrid can be converted into a SplitDockTree

7.2.2 Divider

Between each two Dockables, there is a little gap. The user can grab this gap
with the mouse and move it around. For the very unlikely case that a client needs
to modify this behavior, there exists the interface SplitDividerStrategy. The
interface itself really does not do much, it gets a Component and there are some
suggestions in the API documentation of what the interface should do with
that Component. The divider strategy is changed by using the property key
SplitDockStation.DIVIDER STRATEGY.

7.2.3 LayoutManager

There are many actions a user can perform: making a Dockable “fullscreen” (the
station hides all other children), drop a new Dockable, adjust the sizes of the
children, or adjust the size of the entire station. In older versions code that re-
acted to or implemented these actions was either part of the SplitDockStation
itself, or of the SplitNodes. New developments showed, that it was nearly
impossible to modify the behavior. To solve the issue SplitLayoutManager

was introduced, now these user actions are forwarded to one of the methods

53

of SplitLayoutManager, and the manager may decide either to call the old
code, or to chose a custom solution. It is unlikely that a client ever needs to
change the SplitLayoutManager, but it can be done with the property key
SplitDockStation.LAYOUT MANAGER.

7.3 StackDockStation

The StackDockStation acts like a JTabbedPane, only one of its children is
visible at any time. The look of this station highly depends on the current
DockTheme. Each theme defines a StackDockComponent, and this object is
responsible for creating, painting and layouting the tabs. While the BasicTheme
makes use of a JTabbedPane, all the other themes make use of a class called
CombinedStackDockComponent. This means that tabs usually have the same
behavior, even if they look differently.

Much of what is written in this chapter does not ap-
ply to the BasicTheme, because the abilities of the
JTabbedPane are very limited compared to the abilities of
CombinedStackDockComponent.

7.3.1 TabPane

The class CombinedStackDockComponent is shared by the EclipseTheme,
BubbleTheme and FlatTheme. While the class is responsible for painting and lay-
outing tabs, the real magic happens in its superclass AbstractTabPane, which
implements the interface TabPane. TabPane is completely independent from
StackDockStation, and only CombinedStackDockComponent brings the two
modules together.

TabPane does not need to know about StackDockStation, it just
has to offer some methods to add and remove tabs. This allows
to make a separation: TabPane is responsible for painting tabs,
StackDockStation is responsible for deciding which tabs exist.

TabPane was designed to show Dockables, and as a result it has much more
features than a JTabbedPane. To understand the next chapters, it is certainly
a good idea to have an overwiev of the different parts of a TabPane.

Figure 12 shows some tabs how they could appear in any application. The
items to the left are called tabs, while the button on the right side are part of
the info-component.

Figure 13 shows what happens if there is not enough space to show all tabs.
An additional component shows up, a menu called tab-menu allows the user to
select the tabs that are not visible.

Finally figure 14 shows a single tab. Each tab can contain an icon, some
text, and perhaps some buttons.

54

Figure 12: A TabPane with enough space shows some tabs, and some
DockActions that are associated with the currently selected Dockable.

Figure 13: A TabPane that has not enough space can show a tab-menu, this
menu allows the user to select Dockables that are otherwise not accessible.

Figure 14: A single tab shows the title information of the Dockable it is asso-
ciated with, including some of its DockActions.

A TabPane is nearly the same as a JTabbedPane. The tabs are
represented by the interface Tab, the menu showing inaccessible
Dockables are of type TabMenu. An additional info-component of
type LonelyTabPaneComponent shows DockActions.
Clients that want to implement a new TabPane should subclass
either AbstractTabPane or CombinedStackDockComponent.

7.3.2 Tab content

What information should a tab show? Well, the icon and the title-text of the
Dockable seems like a good idea. But since many tabs have to share limited
space, some developers may decide it would be a good idea to limit the length of
the text, or not to show any icons. The TabContentFilter allows clients to over-
ride the default icon, text and tooltip of a tab. A new TabContentFilter can be
installed by using the property key StackDockStation.TAB CONTENT FILTER.

55

7.3.3 Tab configuration

When a tab runs out of space some drastic actions have to be performed. For
example the tab could stop painting its icon, this gives at least 20 free pixels.
Or it could stop painting its title text, to make sure the icon remains visible.
What exactly happens in such a situation depends on the TabConfiguration,
and this configuration is created by the factory TabConfigurations.

Clients can change the configuration using the property key
StackDockStation.TAB CONFIGURATION.

7.3.4 Header layout

Like a java.awt.Container using a LayoutManager, a TabPane makes use of
a TabLayoutManager. The TabLayoutManager defines the size and location of
all tabs, menu and info-component. The TabLayoutManager receives a TabPane

and by calling methods like putOnTab it can tell the TabPane how to present
the Dockables. Clients can set a custom layout manager using the property key
TabPane.LAYOUT MANAGER.

The default implementation of TabLayoutManager is
MenuLineLayout. This class uses a factory called
MenuLineLayoutFactory to configure some of the details of
the layout. The method createOrder is of special interest, it
returns a MenuLineLayoutOrder which tells order and weight of
tabs, menu and info-component.

7.4 FlapDockStation

The FlapDockStation shows a line of “buttons”, if clicking one a window opens
showing a Dockable. At any time, only one Dockable can be shown.

7.4.1 Button content

The buttons consists of different parts, as can be seen in figure 15. These parts
have different jobs:

Knob The knob provides an empty area where the user can grab the button.
It ensures that drag and drop is always possible.

Icon That is just the icon of the Dockable.

Text The title-text of the Dockable.

Children If the button represents a DockStation, then the button can show
actions to quickly select one of the children of the DockStation.

Actions DockActions associated with a Dockable can be shown on the button
as well.

Which of these elements show up depends on the class ButtonContent.
It offers some conditions with which the framework can decide whether to

56

Figure 15: Two flap-buttons. The left button shows a stack of Dockables, while
the right button shows a single Dockable.

show an element or not. A ButtonContent can be set using the property key
FlapDockStation.BUTTON CONTENT.

There are several default setups for ButtonContent available as
constants in ButtonContent itself. The conditions are modeled by
ButtonContentCondition, an interface that can be implemented
by clients.

The buttons are DockTitles, the default DockThemes all use
BasicButtonDockTitle as button. Clients can install custom
buttons by accessing the DockTitleManager and using the key
FlapDockStation.BUTTON TITLE ID.

7.4.2 Button actions

The flap-button can show DockActions that are associated with the Dockable.
But since space is a limited resource, usually not all actions are shown. The de-
fault behavior is to show only actions which are annotated with
ButtonContentAction. Clients may change the behavior by implementing
the interface ButtonContentFilter and installing it using the property key
FlapDockStation.BUTTON CONTENT FILTER.

57

8 Drag and Drop

Naturally, draging and droping of Dockables is a key feature of the framework.
Funny enough, the code actually involved in DnD is rather small compared to
other modules of the framework.

8.1 Relocator

The sourcecode that detects drag gestures, searches for the target station and
makes sure that the user has some visual feedback is located in the
DefaultDockRelocator. DefaultDockRelocator itself extends from
DockRelocator which just allows to register some listeners and set some useful
properties.

Clients seldomly need to implement their own DockRelocator. If
they do, they have to implement a new DockControllerFactory

in order to install their customized class. The method
createRelocator is responsible for creating the new object.
This factory has then to be given to the constructor of a
DockController.

The DockRelocator that is in use can be accessed through the method
getRelocator of DockController.

8.2 Deciding what element to drag

The Relocator needs to know where and when the user presses and moves
the mouse. There are two solutions to this problem: either let the Relocator

know what Components are shown, or remotely control the Relocator. The first
solution is achieved with DockElementRepresentatives, the second solution is
achieved with the RemoteRelocator.

8.2.1 DockElementRepresentative

A DockElementRepresentative is a Component which represents a Dockable.
Anyone can add MouseInputListeners to a representative and hence be in-
formed about anything the mouse does on top of such a Component.

While the internal implementations of DockElementRepresentative are
handled automatically by the framework, clients introducing new representatives
will have to call the methods addRepresentative and remoteRepresentative

of DockController to install or uninstall the item.

DockElementRepresentative was added late to the framework.
It carries some legacy code: the method isUsedAsTitle. This
method introduces a distinction between those representations for
which all features are activated (e.g. popup menus) and those
for which only a selected subset is available. Normally clients
implement representatives that are used as title and can return
true here.

58

The behavior for representations of Dockables that are
not registered is unspecified. Clients should not add a
DockElementRepresentative if its Dockable is unknown to the
DockController.

8.2.2 Remote control

Sometimes it is not possible to implement a DockElementRepresentative. Re-
mote control of a relocator is an alternative for these cases. Remote control is
realized by the RemoteRelocator.

A RemoteRelocator can be optained by calling createRemote of
DockRelocator. RemoteRelocator should be used in combination with a
MouseListener and a MouseMotionListener:

� MouseListener.mousePressed �RemoteRelocator.init

� MouseMotionListener.mouseDragged �RemoteRelocator.drag

� MouseListener.mouseReleased �RemoteRelocator.drop

The methods init, drag and drop return a Reaction. The reaction tells the
caller what to do next:

� CONTINUE: the operation continues, the event was ignored.

� CONTINUE CONSUMED: the operation continues, the event was consumed.
The caller should invoke MouseEvent.consume.

� BREAK: the operation was canceled, the event was ignored.

� BREAK CONSUMED: the operation was canceled, the event was consumed.
The caller should invoke MouseEvent.consume.

There is a second interface called DirectRemoteRelocator. In-
stances can be optained by calling createDirectRemote of
DockRelocator. A DirectRemoteRelocator is basically the same
as a RemoteRelocator but always assumes that the user pressed
the correct button on the mouse. Its methods do not return a
Reaction because the event would always be consumed anyway.

Clients can use several remote controls at the same time, they
will cancel out each other if necessary. A RemoteRelocator can
be used several times.

8.3 Deciding where to drop an element

A relocator needs to find the one DockStation on which the Dockable should be
dropped. There is a default search algorithm which just orders all DockStations
by importance and visits them, and there are some interfaces which can influence
the search.

59

8.3.1 Search

The DefaultDockRelocator searches the destination anew whenever the mouse
is moved. A search consists of these steps::

1. An ordered list of all potential destinations is built. A DockStation is a
potential destination if it is visible (isStationShowing of DockStation),
not the dragged Dockable nor one of its children. Each station offers a
set of DockStationDropLayers (getLayers), the layers decide whether
the mouse is over a station or not. The order of the destinations depends
on the priority of the layers, the parent-child relations between the stations
and between the Windows on which the stations are.

2. Then the method prepareDrop of DockStation is called. This method
checks whether the station really is a good destination, if so it returns a
StationDropOperation. The first station returning an operation is the
destination.

3. The method draw of the new operation is called, the method destroy on
the old operation. The new operation will paint some markings to give a
visual feedback to the user.

There is more information about the exact semantics in the API-
documentation for DockStation.

Most of the work for drag and drop is done by the DockStations
themselfs, the DockRelocator just connects them. In order to
complete the task the following methods and interfaces should be
used:

� DockStation.accept and Dockable.accept tells the sta-
tion whether a child-parent relation is possible.

� DockController.getAcceptance allows access to the
global DockAcceptance, an additional restriction that
should be checked before allowing a drag and drop oper-
ation.

� To paint on the station, a StationPaint should be used. A
StationPaint can be accessed through the ThemeManager.

8.3.2 Drop

Once the user releases the mouse, Dockable is dropped. The framework will
call the method execute of StationDropOperation.

� The Dockable may just be dropped aside of all the other children of the
station. All that happens is that the DockStation gets a new child.

60

� The Dockable may be dropped over another child of the station. In this
case the station may decide to combine the two children. The future
parent DockStation will access a Combiner which defines how exactly two
Dockables can be merged into one, usually the answer is by creating a new
StackDockStation. Clients can replace the current Combiner through the
ThemeManager.

� If the dragged Dockable is a DockStation itself, it may be feasible to
merge the parent and the new child DockStation into one station. The
interface Merger is responsible for that. Clients can replace the default
Merger by calling DockRelocator.setMerger.

Exchanging a Combiner or the Merger does not affect any existing
Dockable or DockStation, it will only affect the creation of new
elements.

8.4 Restrictions

Not every possible DockStation is a good or valid target for a dragged Dockable.
The framework applies a set of restrictions to drag and drop operations, these
restrictions are implemented by “acceptance tests”. Each acceptance test can
veto against some child parent relations. The usual reasons why clients would
want to implement their own tests consist of:

� Some Dockable must always be visible.

� Some DockStations represent a special area that can only be used by a
subset of Dockables.

� Some Dockables can only be presented on a certain kind of DockStation.

Acceptance tests are performed during the drag and drop operation, but
also if one of DockStation.drop methods is called. The acceptance tests are
implemented by these methods:

� Every Dockable has two methods called accept. One method checks
whether the Dockable can be put directly onto some new parent, the other
method checks whether the Dockable can be combined with an already
existing child.

� Each DockStation has a method accept. This method tells whether some
Dockable can become a child of the DockStation.

� And then there are DockAcceptances. A DockAcceptance has accept-
methods too. These methods get a DockStation and some Dockables,
and then have to decide whether the elements can be put together. Each
DockAcceptance works on a global scale, and thus they are registered at
the DockController through addAcceptance.

61

Acceptance tests are very powerful. They have to be implemented
carefully or the drag and drop mechanism might become crippled.

Acceptance tests are performed by the potential destination
DockStation. The DockStation is the first module that knows
where a Dockable will land. Handling acceptance tests allows the
station to cut down the amount of work it does, and to try alter-
native actions (e.g. a “put” instead of a “merge” action) if some
future configuration does not pass the tests.
The drawback is, that a DockStation can break the mechanism
by just not performing the tests.

8.5 Modes

A DockRelocator can have ”modes”. A mode is some kind of behavior that
is activated when the user presses a certain combination of keys. Modes are
modeled by the class DockRelocatorMode. It is not specified what effect a
mode really has, but normally a mode would add some restrictions where to
put a Dockable during drag and drop. DockRelocatorModes can be added or
removed to a DockRelocator by the methods addMode and removeMode.

Currently two modes are installed:

DockRelocatorMode.SCREEN ONLY (press key shift) ensures that a
Dockable can only be put on a ScreenDockStation. That means that a
Dockable can be directly above a DockStation like a SplitDockStation,
but can’t be dropped there.

DockRelocatorMode.NO COMBINATION (press key alt) ensures that a
Dockable can’t be put over another Dockable. That means, every opera-
tion that would result in a merge is forbidden. Also dropping a Dockable

on already merged Dockables will not be allowed.

The keys that have to be pressed to activate SCREEN ONLY

or NO COMBINATION are the properties SCREEN MASK and
NO COMBINATION MASK. The can be changed by accessing the
DockProperties.

8.6 Animations

During drag and drop, the framework may show some animations to help the
user understand what effects dropping the Dockable would have. The anima-
tions usually involve moving or resizing the Dockables that are not dragged.
These animations are implemented with help of the Span interface. Each Span

object represents some gap in the layout, a Span basically is a self mutating
integer, to be understood as the size of a gap in pixels. Each DockStation

62

may use several Spans at the same time, and an animation may involve multiple
Spans changing their value simultaneously.

There are two sides involved in the animations:

� The DockStations define where and when the animations
appear. For example a FlapDockStation can trigger an
animation to insert empty space between each of its buttons.

� The Spans define how an animation looks like. For example
a Span could be implemented such that an animation starts
slowly and increases its speed over time.

Clients cannot tell a DockStation where the animations take place, but they
can influence how the animations look like. To do that, clients need to implement
both the Span and the SpanFactory interface. The DockStation will configure
the Span, by associating different sizes (number of pixels) to different SpanModes,
and later by telling the Span which SpanMode currently is required. In return
the Span will call the resized method of the SpanCallback whenever the size
of the gap changes.

To install a new SpanFactory clients can:

� Use the property key DockTheme.SPAN FACTORY to globally
change the factory.

� Use ThemeManager.setSpanFactory to change the factory
only for one class of DockStations.

� Calling setSpanFactory of BasicTheme before the theme is
installed.

Some themes, like the EclipseTheme, deliberately disable the an-
imations by installing the NoSpanFactory.

63

9 Preferences

The preference system allows the user to change settings which are otherwise
not accessible. An example would be the shortcut for maximizing a Dockable

(ctrl+m). The preference system makes a sharp distinction between model and
view, clients are free to integrate the model in their own view, or to create a
new model and using the standard view. Figure 16 shows the simple version of
the standard view with some random preferences.

Figure 16: The PreferenceDialog showing some random preferences.

Additionaly the prerefence API offers mechanism to persistently store pref-
erences.

9.1 Model

The model is an adapter to the view and presents some properties as a list of
modifiable items. Whether the model represents properties of the framework or
custom properties is unimportant for the view or the persistent storage mecha-
nism to work.

9.1.1 Preference

A preference is an abstract concept. One preference represents some property
of the framework (or of the client). A preference is a set of meta-informations
about a property:

Path A unique identifier, is used by the persistent storage to identify a property.

Value The current value of the property.

TypePath Tells how to work with Value. For example how to present the
value to the user (as text, as image...) or how to store the value. An
object of type Path is used to represent the TypePath.

ValueInfo Information about the value, e.g. the maximum value for an
Integer-property. The exact meaning of this information depends on
the TypePath.

64

Value is some Object and TypePath tells the view how to cast
Value in order to use it. If TypePath were a Class then there
would never be doubt whether the correct cast is performed. But
TypePath is a Path and hence an additional indirection is intro-
duced.
The reason for this is that the same Object might need different
treatment in different situations. E.g. an Integer could just be
an int, it could be a natural number or it could be an int from the
range 1 to 100.

There is an interface Preference and a class DefaultPreference
which bring this preference-abstraction to code. It is not necessary
to use them, they are just here to simplify things.

9.1.2 PreferenceModel

The PreferenceModel is the basic module of the preference system. A
PreferenceModel is a list of preferences (the abstraction, not the interface).
It often acts as mediator between some unspecified storage mechanism for prop-
erties and the user interface. The methods read and write are used to access
that covered storage mechanism. To transfer values into the model read is
called, to transver values to the storage mechanism write is called.

DefaultPreferenceModel is the standard implementation of
PreferenceModel. Its entries are objects of type Preference.
Several models can be combined using a
MergedPreferenceModel.

There are several subclasses of DefaultPreferenceModel for var-
ious settings that can be made. For example EclipseThemeModel

handles properties of EclipseTheme.
There are also many implementations of Preference for vari-
ous properties of the framework. The API-documentation reveals
more.

9.1.3 PreferenceTreeModel

This model is a PreferenceModel and a javax.swing.TreeModel. If seen as
PreferenceModel, then it behaves like a MergedPreferenceModel. If seen as
TreeModel, then it contains PrefereceTreeModel.Node-objects. A node can
either be just a name, or another PreferenceModel. This model is intended
to be used in a JTree where the user can select one aspect of the whole set of
preferences to show.

65

The subclass DockingFramesPreferenceModel is the set of pref-
erences which includes all the aspects of the core-library.

9.2 View

A PreferenceModel is best displayed in a PreferenceTable. This table will
show a label, an editor and operations for each preference.

A PreferenceTreeModel can be displayed in a PreferenceTreePanel. It
will show not only a PreferenceTable but also a JTree where the user can
select which sub-model to edit.

Further more the PreferenceDialog and the PreferenceTreeDialog are
available. These dialogs offer the options to apply the settings, to cancel editing
and to reset all preferences to their default value.

9.2.1 Editors

Since there are different types of preferences, different editors are needed. The
kind of editor for one preference is determined by the type-path (getTypePath
in a model). Clients can add new editors to a PreferenceTable through the
method setEditorFactory.

An editor is always of type PreferenceEditor. Each editor gets a
PreferenceEditorCallback with which it can interact with the table. When-
ever the user changes the editors value, the editor should call the method set

of PreferenceEditorCallback to make sure the new value gets stored.

9.2.2 Operations

There are some operations which should be available for almost any preference.
For example set a default value or delete the current value. The preference
system introduces the PreferenceOperation to handle these kind of actions.

A PreferenceOperation is nothing more than a label and an icon. The
logic for an operation is either in an editor or in a model.

Editor: Editors with operations must call the method setOperation of
PreferenceEditorCallback for each operation they offer. By calling
setOperation more than once, the editor can change the enabled state of
the operation. If the user triggers an operation of the editor, the method
doOperation of PreferenceEditor is called. It is then the editors re-
sponsibility to handle the operation.

Preference: Preferences can have operations as well. The method
getOperations of PreferenceModel will be called once to get all the
available operations for one preference. The method isEnabled will be
invoked to find out whether an operation is enabled or not. Models can
change the enabled state by calling preferenceChanged of
PreferenceModelListener. If the user triggers an operation,
doOperation of PreferenceModel will be invoked.

66

If an editor and a preference share the same operations, then per definition the
operations belong to the editor. All settings from the model will just be ignored.

Operations might be confusing at first, but they can be really
useful. The strength of operations is that they are handled auto-
matically, and that they need not much code.

9.3 Storage

The PreferenceStorage can be used to store PreferenceModels in memory or
persistent either as byte-stream or as XML.

The normal way to write a model from memory to the disk looks like this:

1 // the stream we want to wri te into
2 DataOutputStream out = . . .
3
4 // the model we want to s tore
5 PreferenceModel model = . . .
6
7 // And now store the model
8 Pre f e r enceSto rage s to rage = new Pre f e r enceSto rage () ;
9 s to rage . s t o r e (model) ;

10 s to rage . wr i t e (out) ;

Note that there are two phases in writing model. First the model gets stored
(line 9) into storage. It is possible to store more than just one model in a
PreferenceStorage. Second storage gets written onto the disk in line 10.

The standard way to read a model are to apply the same steps in reverse:

1 // the source of any new data
2 DataInputStream in = . . .
3
4 // the model we want to load
5 PreferenceModel model = . . .
6
7 // And now load the model
8 Pre f e r enceSto rage s to rage = new Pre f e r enceSto rage () ;
9 s to rage . read (in) ;

10 s to rage . load (model , fa l se) ;

Like writing this operation has two phases. In line 9 storage gets filled with
information, in line 10 the information gets transfered to model. The argu-
ment false is a hint what to do with missing preferences. In this case missing
preferences are just ignored. A value of true would force them to become null.

There are some preferences which do not need to be stored by the
PreferenceStorage because they are already stored by the underlying sys-
tem. These preferences are called natural, while the others are called artificial.
The method isNatural of PreferenceModel can be used to distinguish them.

The distinction between natural and artificial preferences might
seem strange. But this allows to use different types of storage
mechanisms at the same time.

9.4 Lifecycle

This section describes the best way how to use a PreferenceModel.
The correct lifecycle of a PreferenceModel includes normally these steps:

67

1. Create the model. Set up all the preferences that are used by the model.

2. Call load on a StoragePreference.

3. Call write on the model to synchronize the model with the underlying
system.

4. (work with the underlying system)

5. To work with the model: call first read, then make the changes in the
model, then call write.

6. (work with the underlying system)

7. Call read on the model to synchronize the model with the underlying
system.

8. Store the model using store of a PreferenceStorage.

If the PreferenceStorage used in step 2 is empty because its read or
readXML method failed, then calling read of PreferenceModel would at least
load some default settings.

Steps 4, 5, 6 can be cycled as many times as needed.
An additional step 0 and 9 would be to read and write the

PreferenceStorage when starting up or shuting down the application.

68

10 Extensions

Extensions allow libraries to add new code to the framework, this code will be
treated as if it were always part of the framework. Basically it is a plug-in
mechanism. Currently there are not many points where an extension can be
inserted, new extension-points will be added when needed. Developers which
are interested in using the extension mechanism should contact the developers
directly at http://forum.byte-welt.net/forumdisplay.php?f=69.

Extensions are collected by the ExtensionManager. Any module can call
load to load extensions that match some ExtensionName.

Extensions were introduced in 1.0.8 to allow the usage of the glass-
components. The glass-components could not be added directly
to the framework due to licencing issues.
In version 1.1.1 a number of new extension points were added in
order to support the new Toolbar Extension.

10.1 Extension Points

A number of extensions exists. The following list only includes the extensions
of the Core library.

New choices in the preferences
ChoiceExtension.CHOICE EXTENSION : Allows to add additional entries
to a Choice. A Choice is a preference allowing the user to pick one of
many items.

Extending a DockTheme

DockThemeExtension.DOCK THEME EXTENSION : Allows to modify a
DockTheme during the installation process.

Additional colors
ColorScheme.EXTENSION NAME : Allows to extend or override the contents
of a ColorScheme.

New DockableProperty

PropertyTransformer.FACTORY EXTENSION : Adds new factories to the
default list of DockablePropertyFactory.

Merging Dockables
DefaultDockRelocator.MERGE EXTENSION : Adds new Mergers to the
DockRelocator, these Mergers are executed after the default Mergers.

Modify drag and drop
DefaultDockRelocator.INSERTER EXTENSION : Allows an extension to com-
pletely override the default drag and drop behavior.

Attraction of floating Dockables
ScreenDockStation.ATTRACTOR STRATEGY EXTENSION : Installs additional
rules to find out whether to windows of a ScreenDockStation attract each
other or stick together.

69

Persistent storage
DockSituation.DOCK FACTORY EXTENSION : Adds new factories for persis-
tently storing the layout of DockStations and Dockables.

Modify titles
DockTitleVersion.DOCK TITLE VERSION EXTENSION : Extends the mech-
anism that creates new DockTitles, the extension can inject new types of
titles.

Modify displayers
DisplayerFactory.DISPLAYER EXTENSION : Injects additional factories for
creating DockableDisplayers, these factories have a higher priority than
the default factories.

Additional text
TextManager.TEXT EXTENSION : Adds more language files to the
TextManager.

Modify the window configuration
DefaultScreenDockWindowConfiguration.CONFIGURATION EXTENSION :
Modifies the default configuration of the windows of a ScreenDockStation.

Images during drag and drop
DefaultDockableMovingImageFactory.FACTORY EXTENSION : Modifies the
image that is shown beneath the mouse during a drag and drop operation.

Modifying ScreenDockStation

ScreenDockStation.STATION EXTENSION : Installs an algorithm that mod-
ifies the behavior of a ScreenDockStation when dropping a Dockable.

Handling new types in perspectives
DefaultFrontendPerspectiveCache.CACHE EXTENSION : The extension
adds new types of PerspctiveElement to the factory which converts nor-
mal DockElements to PerspectiveElements.

Extending a DockFrontend

DockFrontend.FRONTEND EXTENSION : This extensions knows which
DockFrontends exist and can modify them.

10.2 Glass Extension

The glass-extension adds new icons and a new way to paint tabs to the
EclipseTheme. Clients only need to ensure that the libraries
docking-frames-ext-glass.jar and glasslib.jar are part of the classpath.
The ExtensionManager will then automatically load this extension.

The Glass Extension is licensed by a modified version of the
LGPL. You are prohibited to use the library if your application
provides “pornography, racialistics, violence, or the like material”.

70

10.3 Toolbar Extension

The Toolbar-extension adds toolbars, a set of new DockStations and Dockables,
to the framework. Clients need to ensure that the library
docking-frames-ext-toolbar.jar is part of the classpath, the
ExtensionManager will then load and install the extension automatically.

There are several examples included in the tutorial, these exam-
ples are stored in folders called “Toolbar”.

71

11 Properties

There are a number of interesting settings whose effects are deeply hidden within
the framework. Properties are an easy way to access these settings and change
them. Properties are represented by the class DockProperties which can be
accessed through getProperties of DockController.

DockProperties is nothing else than a map. Instances of PropertyKey

are used as keys. The type of the value depends on the key and the map is
typesafe. With the help of a DockPropertyListener any object can be informed
immediately when a value changes.

There are a number of keys and the remainder of this chapter will list all of
the keys that are present in version 1.1.1. If not explicitly said otherwise, then
any change in the properties will have an immediate effect. This list is only an
overview, please have a look at the API documentation or the source code to
find out about types and default values.

Some of these properties are accessed and changed by DockThemes.
It is still possible to override these properties, but clients should
be careful and ensure not to break the theme.

11.1 Themes

These properties either are only used by some DockThemes, or are changed by
DockThemes.

Colors of the BasicTheme

BasicTheme.BASIC COLOR SCHEME : Sets a strategy (acting like a map)
that tells which Colors to use when the BasicTheme is selected.

Colors of the BubbleTheme

BubbleTheme.BUBBLE COLOR SCHEME : Sets a strategy (acting like a map)
that tells which Colors to use when the BubbleTheme is selected.

Actions of the BubbleTheme

BubbleTheme.ACTION DISTRIBUTOR : Tells where a DockAction should ap-
pear: on a tab, on a info-component or on the titel of a Dockable.

Stacking Dockables
DockTheme.COMBINER : The default strategy for merging two Dockables
into one, for example by putting them together on a StackDockStation.

Dockable decorations
DockTheme.DISPLAYER FACTORY : The displayer is a Component between a
Dockable and its parent, the displayer adds some decorations, for example
a border, to the Dockable.

Drag indicator
DockTheme.DOCKABLE MOVING IMAGE FACTORY : Tells what image to show
when the user drags a Dockable around.

72

Dockable selection
DockTheme.DOCKABLE SELECTION : A Component which allows the user to
select the focused Dockable.

Start Dockable selection
DockableSelector.INIT SELECTION : If the user hits this KeyStroke a
window pops up, the user can select the new focused Dockable on that
window.

Background
DockTheme.BACKGROUND PAINT : This strategy paints the background of
various components, it may also make some component transparent.

Borders
DockTheme.BORDER MODIFIER : An adapter that receives a Border, the
adapter may replace the original border with a custom border.

Animations during drag and drop
DockTheme.SPAN FACTORY : During drag and drop, the Spans are used for
an animation where empty space seem to appear beneath the Dockable.

Painting during drag and drop
DockTheme.STATION PAINT : A strategy used to paint on DockStations
during a drag and drop operation.

Text rotation on titles
DockTitle.ORIENTATION STRATEGY : This strategy knows whether the ori-
entation of a DockTitle is horizontal or vertical, it then tells how to rotate
the text on the title.

Colors of the EclipseTheme

EclipseTheme.ECLIPSE COLOR SCHEME : Sets a strategy acting like a map
that tells which Colors to use when the EclipseTheme is selected.

EclipseTheme: when to paint icons
EclipseTheme.PAINT ICONS WHEN DESELECTED : Tells whether icons should
be painted on tabs when they are not selected.

EclipseTheme: how to paint tabs
EclipseTheme.TAB PAINTER : A factory and strategy that defines the look
of the tabs used by the EclipseTheme.

EclipseTheme: tab configuration
EclipseTheme.THEME CONNECTOR : Tells where to paint tabs, and which
DockActions to show on these tabs.

Colors of the FlatTheme

FlatTheme.FLAT COLOR SCHEME : Sets a strategy (acting like a map) that
tells which Colors to use when the FlatTheme is selected.

Actions of the FlatTheme

FlatTheme.ACTION DISTRIBUTOR : Tells where a DockAction should ap-
pear: on a tab, on a info-component or on the titel of a Dockable.

73

Size of icons
IconManager.MINIMUM ICON SIZE : Defines the minimum size of icons,
any icon smaller than this size will be treated as if it would be bigger.

11.2 Stations

Properties related to DockStations.

FlapDockStation: button content
FlapDockStation.BUTTON CONTENT : Decides what content to show on the
buttons, e.g. whether to show an icon or some text.

FlapDockStation: button actions
FlapDockStation.BUTTON CONTENT FILTER : Filters the DockActions that
are shown on the button.

FlapDockStation: persistent layout
FlapDockStation.LAYOUT MANAGER : Strategy to store and load proper-
ties, like the size, of Dockables that are not necessarily known to the
FlapDockStation.

FlapDockStation: minimum size
FlapDockStation.MINIMUM SIZE : The minimum size of the station itself,
this is specially important when the station does not have any children.

FlapDockStation: windows
FlapDockStation.WINDOW FACTORY : A factory creating a FlapWindows,
this window is used to show one of the children of a FlapDockStation.

ScreenDockStation: Attraction and stickiness
ScreenDockStation.ATTRACTOR STRATEGY : Defines which two windows
are attracted or sticked together.

ScreenDockStation: Where the screen ends
ScreenDockStation.BOUNDARY RESTRICTION : A definition of the bound-
aries of the screen, and how windows behave when they are pushed against
the boundaries.

ScreenDockStation: Size of new windows
ScreenDockStation.DROP SIZE STRATEGY : Tells how big a window is when
it is created.

ScreenDockStation: Fullscreen on mouse click
ScreenDockStation.EXPAND ON DOUBLE CLICK : Tells whether double click-
ing with the mouse can command a window to switch into the fullscreen
mode.

ScreenDockStation: Definition of “fullscreen”
ScreenDockStation.FULL SCREEN STRATEGY : Strategy deciding whether
a window is in fullscreen mode or not.

ScreenDockStation: Implementation of stickiness
ScreenDockStation.MAGNET STRATEGY : An algorithm that implements

74

magnetization, the algorithm is responsible for finding out which two win-
dows are attract each other or stick together, and how to react when one
of the windows is moved aorund.

ScreenDockStation: Issues with focus
ScreenDockStation.PREVENT FOCUS STEALING DELAY : A short delay in
which a window cannot steal the focus if the owner window of the
ScreenDockStation changed.

ScreenDockStation: Configuration of windows
ScreenDockStation.WINDOW CONFIGURATION : A factory creating config-
urations for the windows, for example whether the window is resizeable.

ScreenDockStation: Implementation of windows
ScreenDockStation.WINDOW FACTORY : A factory creating new windows.

SplitDockStation: Moving the gaps
SplitDockStation.DIVIDER STRATEGY : This strategy is responsible for
changing the location of the gaps when the user grabs them with the
mouse.

SplitDockStation: Handling the layout
SplitDockStation.LAYOUT MANAGER : Decides about size and location of
the children, about what happens if the size of the SplitDockStation

changes, and which drop operations are possible.

SplitDockStation: Maximize a child
SplitDockStation.MAXIMIZE ACCELERATOR : Tells which keys the user
has to hit to maximize a child.

StackDockStation: How the tabs look like
StackDockStation.COMPONENT FACTORY : A factory creating a
StackDockComponent, this component is responsible for painting all the
tabs.

StackDockStation: Reaction on dropping a Dockable

StackDockStation.IMMUTABLE SELECTION INDEX : Whether dropping a
Dockable changes the selected Dockable or not.

StackDockStation: The contents of the tabs
StackDockStation.TAB CONTENT FILTER : An adapter telling what icon
and text to show on the tabs.

StackDockStation: How a small tab looks like
StackDockStation.TAB CONFIGURATIONS : A configuration telling how the
tabs behave if space is running out.

StackDockStation: Where the tabs show up
StackDockStation.TAB PLACEMENT : Tells on which side (left, top, right,
bottom) the tabs appear.

75

11.3 Miscellaneous

Some properties that do not fit in any other category.

Applets and webstart
DockController.RESTRICTED ENVIRONMENT : A Java application has lim-
ited rights when executed as applet or from webstart. The framework
however needs some special rights, for example to monitor the position
of the mouse. If these rights are not available, the framework activates
some workarounds (which are not very efficient). In such cases the frame-
work is called to be running in a restricted environment. The property
is set automatically, and usually clients need only read access. They can
change the property, with the danger that the application no longer works
afterwards.

Show text on buttons
DockAction.BUTTON CONTENT FILTER : DockActions can be shown on but-
tons. Usually the button contains only the icon of the action, but this
strategy allows to show the text (usually used in menus) of the actions as
well.

Importance of actions
DockActionImportanceOrder.ORDER : Tells the order of importance of a
set of DockActions. In a situation where there is not enough space to show
all actions, the least imporant actions will disappear first. Clients can
also use the annotation DockActionImportance to mark the importance
of actions.

Layout of tabs
TabPane.LAYOUT MANAGER : This strategy is used by TabPane to decide
where to show tabs, menus or info-component.

Always show tabs
SingleTabDecider.SINGLE TAB DECIDER : Usually tabs only appear when
some Dockables are stacked. This strategy tells whether Dockables that
are not stacked should still feature a tab.

Drop down menu on stacks
CombinedMenuContent.MENU CONTENT : If there is not enough space to
show all tabs on a StackDockStation, a menu appears where the user
can see the missing tabs. How exactly this menu looks like and how it is
implemented is defined by this property.

Keep track of Dockables
PlaceholderStrategy.PLACEHOLDER STRATEGY : Tells the placeholder of
a Dockable. The placeholder is left behind if a Dockable is removed from
a station, this way the framework still knows the old place of the item.
Clients using DockFrontend or the Common project should not change
this property.

Disable items
DisablingStrategy.STRATEGY : This strategy tells which items (titles,
tabs, actions, Dockables) are disabled. Items that are disabled have a
different color and do not react to user input.

76

No stacking during drag and drop
DockRelocatorMode.NO COMBINATION MASK : If this KeyStroke is pressed
during a drag and drop operation, the framework will not combine
Dockables. For example the framework will not create a new
StackDockStation.

Forced floating during drag and drop
DockRelocatorMode.SCREEN MASK : If this KeyStroke is pressed during
a drag and drop operation, the only valid target of the operation is a
ScreenDockStation.

Close Dockables
DockFrontend.HIDE ACCELERATOR : If this KeyStroke is hit, the currently
focused Dockable is closed - assuming the Dockable can be closed in the
first place.

Dealing with AWT components
AWTComponentCaptureStrategy.STRATEGY : Allows clients to implement
code to take images from AWT components. There are some default
strategies available, going from “nice” to “ugly workaround”.

Tooltips in applets and on webstart
GlassedPane.TOOLTIP STRATEGY : In a restricted environment the frame-
work will use an invisible Component to catch all MouseEvents. This com-
ponent is also responsible for showing tooltips. This strategy allows clients
to modify the tooltip behavior: how they are created, and what they show.

11.4 Gimmicks

These properties are not really necessary, they might be interesting for applica-
tions with a lot customization.

DockStation: default icon
PropertyKey.DOCK STATION ICON : This icon is shown by a DockStation

unless some other icon is set.

DockStation: default title
PropertyKey.DOCK STATION TITLE : This text is shown by a DockStation

unless some other text is set.

DockStation: default tooltip
PropertyKey.DOCK STATION TOOLTIP : This tooltip is shown by a
DockStation unless some other tooltip is set.

Dockable: default icon
PropertyKey.DOCKABLE ICON : This icon is shown by a Dockable unless
some other icon is set.

Dockable: default title
PropertyKey.DOCKABLE TITLE : This text is shown by a Dockable unless
some other text is set.

Dockable: default tooltip
PropertyKey.DOCKABLE TOOLTIP : This tooltip is shown by a Dockable

unless some other tooltip is set.

77

11.5 Glass Extension

The Glass Extension provides some additional properties.

Detailed configuration
EclipseThemeExtension.GLASS FACTORY : This factory creates the “glass
effect”.

Size of tabs
CGlassExtension.SMALL TAB SIZE : Allows to make tabs a little bit smaller.

11.6 Toolbar Extension

The Toolbar Extension provides some additional properties.

Shrinking, Expanding, Stretching
ExpandableToolbarItemStrategy.STRATEGY : Each toolbar-item can ap-
pear in three different sizes, this strategy tells which sizes are available
for which items. Clients usually have no need to implement this interface,
instead the Dockables should implement ExpandableToolbarItem.

ToolbarGroupDockStation: Painting between Dockables.
ToolbarGroupDockStation.DIVIDER STRATEGY FACTORY : This strategy al-
lows the ToolbarGroupDockStation to paint some borders between its
children.

ToolbarGroupDockStation: header component
ToolbarGroupDockStation.HEADER FACTORY : With this factory a client
can add a Component at the top end of a ToolbarGroupDockStation.

ToolbarGroupDockStation: scrollbars
ToolbarGroupDockStation.SCROLLBAR FACTORY : This factory creates scroll-
bars that are shown on a ToolbarGroupDockStation.

ToolbarDockStation: gap between children
ToolbarDockStation.GAP : An integer telling how much space should be
between the children of a ToolbarDockStation.

ToolbarDockStation: gap between border and children
ToolbarDockStation.SIDE GAP : An integer telling how much space should
be between the border and the children of a ToolbarDockStation.

Toolbar behavior
ToolbarStrategy.STRATEGY : This strategy tells how different parts of
the Toolbar Extension fit together. For example it can tell whether a
Dockable can be a child of a toolbar-station, or not.

78

